988 resultados para Caucasus, South--Maps
Resumo:
Forging links between education and industry
Resumo:
From 1974 through 1983, we conducted monitoring to provide the first long-term, year-round record of sea water temperatures south of New England from surface to bottom, and from nearshore to the continental slope. Expendable bathythermograph transects were made approximately monthly during the ten years by scientists and technicians from numerous institutions, working on research vessels that traversed the continental shelf off southern New England. Ten-year (1974-83) means and variability are presented for coastal and bottom water temperatures, for mid-shelf water column temperatures, and for some atmospheric and oceanographic conditions that may influence shelf and upper-slope water temperatures. Possible applications of ocean temperature monitoring to fishery ecology are noted. Some large departures from mean conditions are discussed; particularly notable during the decade were the response of water temperatures to the passage of Gulf Stream warm-core rings, and the magnitude and persistence of shelf-water cooling associated with air temperatures in three successive very cold winters (1976-77, 1977-78, and 1978-79). (PDF file contains 51 pages.)
Resumo:
The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 88 pages.)
Resumo:
The objective of this study was to describe the physical and ichthyological changes occurring seasonally and annually in the south San Francisco Bay, based on the results of 2,561 otter trawl and water samples obtained between February 1973 and June 1982. Temperature varied predictably among seasons in a pattern that varied little between years. Salinity also underwent predictable seasonal changes but the pattern varied substantially between years. The most abundant species of fish were northern anchovy (Engraulis mordax), English sole (Parophrys vetulus), and shiner surfperch (Cymatogaster aggregata). The majority of the common fish species were most abundant during wet years and least abundant in dry years. Numeric diversity was highest during the spring and early summer, with no detectable interannual trends. Species composition changed extensively between seasons and between years, particularly years with extremely high or extremely low freshwater inflows. All the common species exhibited clustered spatial distributions. Such spatial clustering could affect the interpretation of data from estuarine sampling programs. Gobies (Family Gobiidae) were more abundant during flood tides than during ebb tides. English sole were significantly more abundant in shallower areas. Shiner surfperch showed significant differences in abundance between sample areas.(PDF file contains 28 pages.)
Resumo:
Species composition, biomass, density, and diversity of benthic invertebrates from six bard-bottom areas were evaluated. Seasonal collections using a dredge, trawl, and suction and grab samplers yielded 432, 525, and 845 taxa, respectively. Based on collections wltb the different gear types, species composition of invertebrates was found to change bathymetrically. Inner- and mlddle-shelf sites were more similar to each other in terms of invertebrate species composition than they were to outer-shelf sites, regardless of season. Sites on the inner and outer shelf were grouped according to latitude; however, results suggest that depth is apparently a more important determinant of invertebrate species composition than either season or latitude. Sponges generally dominated dredge and trawl collections in terms of biomass. Generally, cnidarians, bryozoans, and sponges dominated at sites In terms of number of taxa collected. The most abundant smaller macrofauna collected in suction and grab samples were polychaetes, amphipods, and mollusks. Densities of the numerically dominant species changed botb seasonally and bathymetrically, with very few of these species restricted to a specific bathymetrlc zone. The high diversity of invertebrates from hard-bottom sites is attributed to the large number of rare species. No consistent seasonal changes in diversity or number of species were noted for individual stations or depth zones. In addition, H and its components showed no definite patterns related to depth or latitude. However, more species were collected at middle-shelf sites than at inner- or outer-shelf sites, which may be related to more stable bottom temperature or greater habitat complexity in that area. (PDF file contains 110 pages.)
Resumo:
Sediment sampling was used to evaluate chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) spawning habitat quality in the South Fork Trinity River (SFTR) basin. Sediment samples were collected using a McNeil-type sampler and wet sieved through a series of Tyler screens (25.00 mm, 12.50 mm, 6.30 mm, 3.35 mm, 1.00 mm, and 0.85 mm). Fines (particles < 0.85 mm) were determined after a l0-minute settling period in Imhoff cones. Thirteen stations were sampled in the SFTR basin: five stations were located in mainstem SFTR between rk 2.1 and 118.5, 2 stations each were located in EF of the SFTR, Grouse Creek, and Madden Creek, and one station each was located in Eltapom and Hayfork Creeks. Sample means for fines(particles < 0.85 mm) fer SFTR stations ranged between 14.4 and 19.4%; tributary station sample mean fines ranged between 3.4 and 19.4%. Decreased egg survival would be expected at 4 of 5 mainstem SFTR stations and at one station in EF of SFTR and Grouse Creek where fines content exceed 15%. Small gravel/sand content measured at all stations were high, and exceed levels associated with reduced sac fry emergence rates. Reduction of egg survival or sac fry emergence due to sedimentation in spawning gravels could lead to reduced juvenile production from the South Fork Trinity River. (PDF contains 18 pages.)
Resumo:
Two high-frequency (HF) radar stations were installed on the coast of the south-eastern Bay of Biscay in 2009, providing high spatial and temporal resolution and large spatial coverage of currents in the area for the first time. This has made it possible to quantitatively assess the air-sea interaction patterns and timescales for the period 2009-2010. The analysis was conducted using the Barnett-Preisendorfer approach to canonical correlation analysis (CCA) of reanalysis surface winds and HF radar-derived surface currents. The CCA yields two canonical patterns: the first wind-current interaction pattern corresponds to the classical Ekman drift at the sea surface, whilst the second describes an anticyclonic/cyclonic surface circulation. The results obtained demonstrate that local winds play an important role in driving the upper water circulation. The wind-current interaction timescales are mainly related to diurnal breezes and synoptic variability. In particular, the breezes force diurnal currents in waters of the continental shelf and slope of the south-eastern Bay. It is concluded that the breezes may force diurnal currents over considerably wider areas than that covered by the HF radar, considering that the northern and southern continental shelves of the Bay exhibit stronger diurnal than annual wind amplitudes.
Resumo:
Internal waves are an important factor in the design of drill operations and production in deep water, because the waves have very large amplitude and may induce large horizontal velocity. How the internal waves occur and propagate over benthal terrain is of great concern for ocean engineers. In the present paper, we have formulated a mathematical model of internal wave propagation in a two-layer deep water, which involves the effects of friction, dissipation and shoaling, and is capable of manifesting the variation of the amplitude and the velocity pattern. After calibration by field data measured at the Continental Slope in the Northern South China Sea, we have applied the model to the South China Sea, investigating the westward propagation of internal waves from the Luzon Strait, where internal waves originate due to the interaction of benthal ridge and tides. We find that the internal wave induced velocity profile is obviously characterized by the opposite flow below and above the pycnocline, which results in a strong shear, threatening safety of ocean structures, such as mooring system of oil platform, risers, etc. When internal waves propagate westwards, the amplitude attenuates due to the effects of friction and dissipation. The preliminary results show that the amplitude is likely to become half of its initial value at Luzon Strait when the internal waves propagate about 400 kilometers westwards.