958 resultados para Carnap Entropy
Resumo:
Marine Protected Areas (MPAs) are an important conservation tool. For marine predators, recent research has focused on the use of Species Distribution Models (SDMs) to identify proposed sites. We used a maximum entropy modelling approach based on static and dynamic oceanographic parameters to determine optimal feeding habitat for black-legged kittiwakes (Rissa tridactyla) at two colonies during two consecutive breeding seasons (2009 and 2010). A combination of Geographic Positioning System (GPS) loggers and Time-Depth Recorders (TDRs) attributed feeding activity to specific locations. Feeding areas were <30 km from the colony, <40 km from land, in productive waters, 25–175m deep. The predicted extent of optimal habitat declined at both colonies between 2009 and 2010 coincident with declines in reproductive success. Whilst the area of predicted optimal habitat changed, its location was spatially stable between years. There was a close match between observed feeding locations and habitat predicted as optimal at one colony (Lambay Island, Republic of Ireland), but a notable mismatch at the other (Rathlin Island, Northern Ireland). Designation of an MPA at Rathlin may, therefore, be less effective than a similar designation at Lambay perhaps due to the inherent variability in currents and sea state in the North Channel compared to the comparatively stable conditions in the central Irish Sea. Current strategies for designating MPAs do not accommodate likely future redistribution of resources due to climate change. We advocate the development of new approaches including dynamic MPAs that track changes in optimal habitat and non-colony specific ecosystem management.
Resumo:
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Resumo:
Features analysis is an important task which can significantly affect the performance of automatic bacteria colony picking. Unstructured environments also affect the automatic colony screening. This paper presents a novel approach for adaptive colony segmentation in unstructured environments by treating the detected peaks of intensity histograms as a morphological feature of images. In order to avoid disturbing peaks, an entropy based mean shift filter is introduced to smooth images as a preprocessing step. The relevance and importance of these features can be determined in an improved support vector machine classifier using unascertained least square estimation. Experimental results show that the proposed unascertained least square support vector machine (ULSSVM) has better recognition accuracy than the other state-of-the-art techniques, and its training process takes less time than most of the traditional approaches presented in this paper.
Resumo:
We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.
Resumo:
We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.
Resumo:
We consider the ground-state entanglement in highly connected many-body systems consisting of harmonic oscillators and spin-1/2 systems. Varying their degree of connectivity, we investigate the interplay between the enhancement of entanglement, due to connections, and its frustration, due to monogamy constraints. Remarkably, we see that in many situations the degree of entanglement in a highly connected system is essentially of the same order as in a low connected one. We also identify instances in which the entanglement decreases as the degree of connectivity increases.
Resumo:
We present Roche tomograms of the K4V secondary star in the cataclysmic variable AE Aqr, reconstructed from two data sets taken 9 d apart, and measure the differential rotation of the stellar surface. The tomograms show many large, cool starspots, including a large high-latitude spot and a prominent appendage down the trailing hemisphere. We find two distinct bands of spots around 22° and 43° latitude, and estimate a spot coverage of 15.4-17 per cent on the Northern hemisphere. Assuming a solar-like differential rotation law, the differential rotation of AE Aqr was measured using two different techniques. The first method yields an equator-pole lap time of 269 d and the second yields a lap time of 262 d. This shows that the star is not fully tidally locked, as was previously assumed for CVs, but has a co-rotation latitude of ˜40°. We discuss the implications that these observations have on stellar dynamo theory, as well as the impact that spot traversal across the L1 point may have on accretion rates in CVs as well as some of their other observed properties. The entropy landscape technique was applied to determine the system parameters of AE Aqr. For the two independent data sets, we find M1 = 1.20 and 1.17 M⊙, M2 = 0.81 and 0.78 M⊙, and orbital inclinations of 50° to 51° at optimal systemic velocities of γ = -64.7 and -62.9 km s-1.
Resumo:
We investigated the soil arthropod communities of urban and suburban holm oak (Quercus ilex L.) stands in a small (Siena) and a large Italian city (Naples) and tested whether the abundance and diversity of higher arthropod taxa are affected by the biotic and abiotic conditions of urban forest soils, including pollution. Acarina and Collembola were the dominant taxa in both cities. In Siena the total number of arthropod individuals collected in the samples was over 1/3 greater than in Naples, but all diversity indices scored higher in Naples than in Siena, probably in response to the higher heterogeneity of microclimatic and pedological conditions found in Naples study area. Oribatids resulted twice more abundant in Siena and so were the total mites with respect to Collembola. While “taxonomic richness” per site increased with distance from road traffic, entropy and evenness indices scored higher at the two ends of the impact gradient in both cities. The overall variation in basic pedological and microbiological soil parameters positively correlated with the total abundance of arthropods, and negatively correlated with their taxonomic richness. At the resolution employed, no significant relation emerged between anthropogenic factors, such as traffic load and soil pollution, and the arthropod fauna density and variety. These results are consistent with conclusions drawn from a previous study on the enchytraeid fauna examined at species level, which is remarkable considering the different taxonomic resolutions of the two studies. CCA results suggest that the higher abundance of Oribatid mites, Protura and Thysanura and the lower abundance of Diplopoda and Symphyla in Siena could depend on a higher fungi/bacteria ratio. This observation can be interpreted in terms of differences in fungi and bacteria between the two cities: Siena is shifted towards the fungal decomposition channel, which supports taxa such as oribatid mites, while Naples is shifted towards the bacterial channel, which supports chiefly detritivorous groups, such as diplopods.
Resumo:
The methane solubility in five pure electrolyte solvents and one binary solvent mixture for lithium ion batteries – such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and the (50:50 wt%) mixture of EC:DMC was studied experimentally at pressures close to atmospheric and as a function of temperature between (280 and 343) K by using an isochoric saturation technique. The effect of the selected anions of a lithium salt LiX (X = hexafluorophosphate,
<img height="16" border="0" style="vertical-align:bottom" width="27" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S0021961414002146-si1.gif">PF6-; tris(pentafluoroethane)trifluorurophosphate, FAP−; bis(trifluoromethylsulfonyl)imide, TFSI−) on the methane solubility in electrolytes for lithium ion batteries was then investigated using a model electrolyte based on the binary mixture of EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt in the same temperature and pressure ranges. Based on experimental solubility data, the Henry’s law constant of the methane in these solutions were then deduced and compared together and with those predicted by using COSMO-RS methodology within COSMOthermX software. From this study, it appears that the methane solubility in each pure solvent decreases with the temperature and increases in the following order: EC < PC < EC:EMC (50:50 wt%) < DMC < EMC < DEC, showing that this increases with the van der Walls force in solution. Additionally, in all investigated EC:DMC (50:50 wt%) + 1 mol · dm−3 of lithium salt electrolytes, the methane solubility decreases also with the temperature and the methane solubility is higher in the electrolyte containing the LiFAP salt, followed by that based on the LiTFSI one. From the variation of the Henry’s law constants with the temperature, the partial molar thermodynamic functions of solvation, such as the standard Gibbs free energy, the enthalpy, and the entropy where then calculated, as well as the mixing enthalpy of the solvent with methane in its hypothetical liquid state. Finally, the effect of the gas structure on their solubility in selected solutions was discussed by comparing methane solubility data reported in the present work with carbon dioxide solubility data available in the same solvents or mixtures to discern the more harmful gas generated during the degradation of the electrolyte, which limits the battery lifetime.
Resumo:
This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.
Resumo:
A Physical Unclonable Function (PUF) can be used to provide authentication of devices by producing die-unique responses. In PUFs based on ring oscillators (ROs) the responses are derived from the oscillation frequencies of the ROs. However, RO PUFs can be vulnerable to attack due to the frequency distribution characteristics of the RO arrays. In this letter, in order to improve the design of RO PUFs for FPGA devices, the frequencies of RO arrays implemented on a large number of FPGA chips are statistically analyzed. Three RO frequency distribution (ROFD) characteristics, which can be used to improve the design of RO PUFs are observed and discussed.
Resumo:
A new homologous series of side-chain liquid crystal polymers, the poly[omega-(4-cyanoazobenzene-4'-oxy)alkyl methacrylate]s, have been prepared in which the length of the flexible alkyl spacer is varied from 3 to 12 methylene units. All the polymers exhibit liquid crystalline behaviour; specifically, crystal E, smectic A and nematic phases are observed. The glass transition temperatures decrease on increasing spacer length before reaching a limiting value at ca. 30 degrees C. The clearing temperatures exhibit an odd-even effect on varying the length and parity of the spacer. This is attributed to the change in the average shape of the side chain as the parity of the spacer is varied. This rationalization also accounts for the observed alternation in the entropy change associated with the clearing transition. A weak relaxation is observed theologically for several members of this polymer series at temperatures above their respective glass transition temperatures. This is attributed either to specific motions of the smectic layers or to 180 degrees reorientational jumps of the long axis of the mesogenic unit about the polymer backbone. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of Ni-58/(Fe-54 + Ni-56), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova (SN) that produced a Ni/Fe ratio of 3.4 +/- 1.2 times solar, we find that burning of a fuel with neutron excess eta approximate to 6 x 10(-3) is required. Unless the progenitor metallicity is over five times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. SNe producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of M-ZAMS less than or similar to 13 M-circle dot stars exploding with a delay time of less than one second (M-cut < 1.5 M-circle dot) are able to achieve such silicon-shell ejection. SNe that produce solar or subsolar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic entropy burning outside the iron core, and neutrino-neutronization obtained in electron capture models remains the only viable explanation.
Resumo:
Purpose Previously, it has been reported that molecular mobility determines the rate of molecular approach to crystal surfaces, while entropy relates to the probability of that approaching molecule having the desirable configuration for further growth of the existing crystal; and the free energy dictates the probability of that molecule not returning to the liquid phase1. If we plot the crystal growth rate and viscosity of a supercooled liquid in a log-log format, the relationship between the two is linear, indicating the influence viscosity has upon crystal growth rate. However, such approximation has been derived from pure drug compounds and it is apparent that further understanding of crystallization from drug-polymer solid dispersion is required in order to stabilise drugs embedded within amorphous polymeric solid dispersions. Methods Mixtures of felodipine and polymer (HPMCAS-HF, PVPK15 and Soluplus®) at specified compositions were prepared using a Restch MM200 ball mill. To examine crystal growth within amorphous solid dispersions, samples were prepared by melting 5-10 mg of ball milled mixture at 150°C for 3-5 minutes on a glass slip pre-cleaned with methanol and acetone. All prepared samples were confirmed to be crystal free by visual observation using a polarised light microscope (Olympus BX50). Prepared samples were stored at 0% RH (P2O5), inside desiccators, maintained in ovens at 80°C. For the dynamic viscosity measurement, approximately 100-200mg ball milled mixture was heated on the base plate of a rotational rheometer at 150°C for 5 minutes and the top plate was lowered to a defined gap to form a good contact with the material. The sandwiched amorphous material was heated to 80°C and the viscosity was measured. Results The equation was used to probe the correlation of viscosity to crystal growth rate. In comparison to the value of xi in log-log equation reported from pure drug compound, a value of 1.63 was obtained for FD-polymer solid dispersions irrespective of the polymer involved. ∝ Conclusion The high xi value suggests stronger viscosity dependence may exist for amorphous FD once incorporated with amorphous polymer.
Resumo:
Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.