988 resultados para Callospermarion cf. undulatw
Resumo:
Burkholderia cepacia infection in cystic fibrosis (CF) patients is associated with significant morbidity and mortality, yet no definitive treatment is currently available. This report describes a new approach to treat B. cepacia infection in CF patients, using a combination of amiloride and tobramycin aerosols. Four adults with the typical clinical syndrome of CF were recruited after repeated positive sputum cultures for B. cepacia. Aerosols of amiloride and tobramycin were given three times daily for 1-6 months, and repeated sputum cultures were collected to assess efficacy. Three of the four patients treated with the combined therapy eradicated B. cepacia from their sputum cultures for at least 2 yrs, and there were no adverse events. This novel combination may provide a new therapeutic option for Burkholderia cepacia infections. Furthermore, the strategy of combining antibiotics with ion transport agents may have ramifications for the treatment of other multi-resistant organisms.
Resumo:
Nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA) to patients with cystic fibrosis (CF) frequently results in chronic respiratory tract carriage. This is an increasing problem, adds to the burden of glycopeptide antibiotic use in hospitals, and represents a relative contraindication to lung transplantation. The aim of this study was to determine whether it is possible to eradicate MRSA with prolonged oral combination antibiotics, and whether this treatment is associated with improved clinical status. Adult CF patients (six male, one female) with chronic MRSA infection were treated for six months with rifampicin and sodium fusidate. Outcome data were examined for six months before treatment, on treatment and after treatment. The patients had a mean age of 29.3 (standard deviation=6.3) years and FEV(1) of 36.1% (standard deviation=12.7) predicted. The mean duration of MRSA isolation was 31 months. MRSA isolates identified in these patients was of the same lineage as the known endemic strain at the hospital when assessed by pulsed-field gel electrophoresis. Five of the seven had no evidence of MRSA during and for at least six months after rifampicin and sodium fusidate. The proportion of sputum samples positive for MRSA was lower during the six months of treatment (0.13) and after treatment (0.19) compared with before treatment (0.85) (P<0.0001). There was a reduction in the number of days of intravenous antibiotics per six months with 20.3+/-17.6 on treatment compared with 50.7 before treatment and 33.0 after treatment (P=0.02). There was no change in lung function. Gastrointestinal side effects occurred in three, but led to therapy cessation in only one patient. Despite the use of antibiotics with anti-staphylococcal activity for treatment of respiratory exacerbation, MRSA infection persists. MRSA can be eradicated from the sputum of patients with CF and chronic MRSA carriage by using rifampicin and sodium fusidate for six months. This finding was associated with a significant reduction in the duration of intravenous antibiotic treatment during therapy.
Resumo:
BACKGROUND: Burkholderia pseudomallei is an important cause of acute fulminant pneumonia and septicaemia in tropical regions of northern Australia and south east Asia. Subacute and chronic forms of the disease also occur. There have been three recent reports of adults with cystic fibrosis (CF) who presumably acquired B pseudomallei infection during extended vacations or residence in either Thailand or northern Australia.
METHODS: The clinical course, molecular characteristics, serology and response to treatment are described in four adult CF patients infected with B pseudomallei. Polymerase chain reaction (PCR) based methods were used to confirm B pseudomallei and exclude B cepacia complex. Genotyping was performed using randomly amplified polymorphic DNA (RAPD) PCR and pulsed field gel electrophoresis (PFGE).
RESULTS: Four patients are described with a mean duration of infection of 32 months. All but one patient lived in tropical Queensland. Two patients (with the longest duration of infection) deteriorated clinically and one subsequently died of respiratory failure. Both responded to intravenous treatment specifically targeting B pseudomallei. Another patient suffered two severe episodes of acute bronchopneumonia following acquisition of B pseudomallei. Eradication of the organism was not possible in any of the cases. PFGE of a sample isolate from each patient revealed the strains to be unique and RAPD analysis showed retention of the same strain within an individual over time.
CONCLUSIONS: These findings support a potential pathogenic role for B pseudomallei in CF lung disease, producing both chronic infection and possibly acute bronchopneumonia. Identical isolates are retained over time and are unique, consistent with likely environmental acquisition and not person to person spread. B pseudomallei is emerging as a significant pathogen for patients with CF residing and holidaying in the tropics.
Resumo:
In this study, a combination of recA-based PCR assays and 16S rDNA restriction fragment length polymorphism (RFLP) analysis was used to determine the genomovar diversity of clinical Burkholderia cepacia complex isolates. Twenty-eight isolates were prospectively collected from patients attending a large Australian adult cystic fibrosis (CF) unit, 22 isolates were referred from other Australian CF units and a further eight isolates originated from patients without CF. The 28 prospectively collected isolates were distributed amongst the following genomovars: Burkholderia cepacia genomovar I (28.6%), Burkholderia multivorans (21.4%), Burkholderia cepacia genomovar III (39.3%), Burkholderia vietnamiensis(3.6%) and Burkholderia ambifaria (7.1%). The results of this study highlight the usefulness of 16S rDNA RFLP typing for the identification of other Burkholderia spp. and non-fermenting gram-negative bacteria.
Resumo:
Introduction and Aims: The identification of complex chronic polymicrobial infections, such as those observed in the cystic fibrosis (CF) airways, are often a diagnostic challenge. Few studies have compared culture-dependent methods with molecular identification making it hard to describe bacterial communities in a comprehensive manner. The aim of the study is to compare four different methods with respect to their similarities and differences in detection of bacteria. Methods: We compared41 sputum samples fromroutine clinical-culture, extended-culture (aerobic and anaerobic), and molecular identification such as Roche 454-FLX Titanium and T-RFLP to assess concurrence between methodologies in detecting bacteria. The agreement between methodologies in detecting either absence or presence of bacterial taxa was assessed by Kappa (κ) statistics. Results: The majority of bacterial taxa identified by culture were also identified with molecular analysis. In total 2, 60, 25, and 179 different bacterial taxa were identified with clinical-culture, extended-culture, T-RFLP and 454-FLX respectively. Clinical-culture, extended-culture and T-RFLP were poor predictors of species richness when compared to 454-FLX (p < 0.0001). Agreement between methods for detecting Pseudomonas sp. and Burkholderia sp. was good with κ ≥ 0.7 [p < 0.0001] and κ ≥ 0.9 [p < 0.0001] respectively. Detection of anaerobic bacteria, such as Prevotella sp. and Veillonella sp., was moderate between extended-culture and 454-FLX with κ = 0.461 [p < 0.0001] and κ = 0.311 [p = 0.032] respectively, and good between T-RFLP and 454-FLX with κ = 0.577 [p < 0.0001] and κ = 0.808 [p < 0.0001] respectively. Agreement between methods for other main bacterial taxa, such as Staphylcoccus sp. and Streptococcus sp., was poor with only a moderate agreement for detection of Streptococcus sp. observed between T-RFLP and 454-FLX (κ = 0.221 [p = 0.024]). Conclusions: This study demonstrates the increased sensitivity culture-independent microbial identification such as the 454-FLX have over clinical-culture, extended-culture and T-RFLP methodologies. The extended-culture detected majority of the most prevalent bacterial taxa associated with chronic colonisation of the CF airways which were also detected by culture-independent methodologies. However, agreement between methods in detecting number of potentially relevant bacteria is largely lacking.
Resumo:
Introduction and Aims: Previous studies have shown that the lungs of Cystic Fibrosis (CF) and bronchiectasis (BE, not caused by CF) patients are colonised by a range of aerobic and anaerobic bacteria. As bacteria are also implicated in the pathogenesis and progression of chronic obstructive pulmonary disease (COPD), this study aimed to determine the culture microbiome of the COPD airways.
Methods: Samples were collected from 13 stable COPD patients during routine bronchoscopy. Bronchial washings were taken at a single location in the right middle lobe by flushing and removing 30 ml of sterile saline. Samples were cultured under strict anaerobic conditions with bacteria detected by plating on both selective and non-selective agar media and quantified by total viable count (TVC). Identification of the cultured bacteria was performed by amplification and subsequent sequencing of the 16sRNA gene.
Results: Mean FEV1 was 1.36 (range 0.84–2.26, mean per cent predicted FEV1, 54%), and the mean ratio (FEV1/FVC) was 51%. Bacteria were detected in 12/13 samples (92%) with bacteria from the genera Streptococcus [12/13 samples, 92%; mean (range) TVC 9.62×105 cfu/ml (1.50×103–1.42×107)] and Haemophilus [4/13 samples, 31%; mean (range) 6.40×104 cfu/ml (2.20×103–1.60×105)] most frequently detected. Anaerobic bacteria primarily from the genera Prevotella [8/13 samples, 62%; mean (range) TVC 1.12×104 cfu/ml (1.30×103–4.20×104)] and Veillonella [5/13 samples, 38%; mean (range) TVC 1.29×105 cfu/ml (4.20×103–3.60×105)] were also detected. Pseudomonas and Moraxella were not detected in any samples.
Conclusions: Our results show that bacteria from the genera Streptococcus, Haemophilus, Prevotella and Veillonella are frequently present the airways of patients suffering from COPD. Taking account of the dilutional effect of the bronchial wash procedure and extrapolating to allow comparison with sputum data in our laboratory for CF and BE, the relative load of bacteria from the genera Streptococcus, Prevotella and Veillonella is similar in these three airway diseases. The potential role of these bacteria in the progression and pathogenesis of COPD requires further investigation.
Resumo:
BACKGROUND: A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients.
METHODS: P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs.
RESULTS: Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals.
CONCLUSIONS: Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections.
Resumo:
Approximate execution is a viable technique for energy-con\-strained environments, provided that applications have the mechanisms to produce outputs of the highest possible quality within the given energy budget.
We introduce a framework for energy-constrained execution with controlled and graceful quality loss. A simple programming model allows users to express the relative importance of computations for the quality of the end result, as well as minimum quality requirements. The significance-aware runtime system uses an application-specific analytical energy model to identify the degree of concurrency and approximation that maximizes quality while meeting user-specified energy constraints. Evaluation on a dual-socket 8-core server shows that the proposed
framework predicts the optimal configuration with high accuracy, enabling energy-constrained executions that result in significantly higher quality compared to loop perforation, a compiler approximation technique.
Resumo:
This paper evaluates the viability of user-level software management of a hybrid DRAM/NVM main memory system. We propose an operating system (OS) and programming interface to place data from within the user application. We present a profiling tool to help programmers decide on the placement of application data in hybrid memory systems. Cycle-accurate simulation of modified applications confirms that our approach is more energy-efficient than state-of-the- art hardware or OS approaches at equivalent performance. Moreover, our results are validated on several candidate NVM technologies and a wide set of 14 benchmarks.
The key observation behind this work is that, for the work- loads we evaluated, application objects are too short-lived to motivate migration. Utilizing this property significantly reduces the hardware complexity of hybrid memory systems.
Resumo:
Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).
Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.
Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.
Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.
Resumo:
Neutrophil elastase (NE), a biomarker of infection and inflammation, correlates with the severity of several respiratory diseases including cystic fibrosis (CF) however, its detection and quantification in biological samples is confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes, resulting in an over-estimation of the target protease. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel immunoassay (NE-Tag ELISA), incorporating an activity dependent ProteaseTag™ and a specific antibody step, which is selective and specific for the capture of active NE. The objective of this study was to clinically validate NE-Tag ELISA for the detection of active NE in sputum from CF patients. Sputum (n=45) was recovered from CF patients hospitalised for acute exacerbation. Sol was recovered and analysed for NE activity using the NE-Tag ELISA and two fluorogenic substrate-based assays [1. Suc-AAPV-AMC (Sigma) and 2. InnozymeTM Immunocapture assay (Calbiochem)]. NE activity between assays and with a range of clinical parameters was correlated.A highly significant correlation was shown between assays. NE activity (NE-Tag) further correlated appropriately with clinical parameters: inversely with FEV1 (p = 0.036) and positively with CRP (p = 0.035), neutrophils and total white cell counts (p < 0.001). The InnozymeTM assay showed similar correlations with the clinical parameters (with the exception of CRP). No correlations with any of the clinical parameters were observed when NE was measured using the standard fluorogenic substrate.
Resumo:
Dehydration of the airway surface liquid (ASL) and the resultant decline in function of the mucociliary escalator in cystic fibrosis airways is largely underpinned by the excessive flux of Na+ and water though ENaC. Proteolysis of the endogenous and subunits of epithelial sodium channels (ENaC) by channel activating proteases (CAPS) is the key regulatory mechanism for channel activation. Recent reports highlight that (1) CFTR (cystic fibrosis transmembrane conductance regulator) normally protects ENaC from the action of proteases and (2) a stark imbalance in proteases/protease inhibitor levels in CF airway cultures favour activation of normally inactive ENaC. The current study examines the potential therapeutic benefit of CAPS/ENaC inhibition in CF airways.
Our group has developed a panel of active-site directed affinity-based probes which target and inhibit trypsin-like proteases (potential CAPS); including the broad-spectrum inhibitor QUB-TL1. We have utilised this compound to interrogate the impact of trypsin-like protease inhibition on ENaC activity in differentiated primary airway epithelial cell cultures.
Electrophysiological data demonstrate QUB-TL1 selectively and irreversibly binds to extracellularly located trypsin-like proteases resulting in impaired ENaC-mediated Na+ transport. Visualisation of ENaC at the apical surface compartment of primary airway epithelial cells shows a large reduction in a low molecular weight (processed and active) form of ENaC, which was found to be abundant in untreated CF cultures. Consistent with the reduction in ENaC activity observed, QUB-TL1 treatment was subsequently shown to increase ASL height (performed in collaboration with Royal College of Surgeons in Ireland).
Our results are consistent with the hypothesis that targeting the CAPS-ENaC signalling axis may restore the depleted ASL seen in CF airways.
Resumo:
Inhaled antibiotics, such as tobramycin, for the treatment of Pseudomonas aeruginosa pulmonary infections are associated with the increase in life expectancy seen in cystic fibrosis (CF) patients over recent years. However, the effectiveness of this aminoglycoside is still limited by its inability to penetrate the thick DNA-rich mucus in the lungs of these patients, leading to low antibiotic exposure to resident bacteria. In this study, we created novel polymeric nanoparticle (NP) delivery vehicles for tobramycin. Using isothermal titration calorimetry, we showed that tobramycin binds with alginate polymer and, by exploiting this interaction, optimised the production of tobramycin alginate/chitosan NPs. It was established that NP antimicrobial activity against P. aeruginosa PA01 was equivalent to unencapsulated tobramycin (minimum inhibitory concentration 0.625 mg/L). Galleria mellonella was employed as an in vivo model for P. aeruginosa infection. Survival rates of 90% were observed following injection of NPs, inferring low NP toxicity. After infection with P. aeruginosa, we showed that a lethal inoculum was effectively cleared by tobramycin NPs in a dose dependent manner. Crucially, a treatment with NPs prior to infection provided a longer window of antibiotic protection, doubling survival rates from 40% with free tobramycin to 80% with NP treatment. Tobramycin NPs were then functionalised with dornase alfa (recombinant human deoxyribonuclease I, DNase), demonstrating DNA degradation and improved NP penetration of CF sputum. Following incubation with CF sputum, tobramycin NPs both with and without DNase functionalisation, exhibited anti-pseudomonal effects. Overall, this work demonstrates the production of effective antimicrobial NPs, which may have clinical utility as mucus-penetrating tobramycin delivery vehicles, combining two widely used CF therapeutics into a single NP formulation. This nano-antibiotic represents a strategy to overcome the mucus barrier, increase local drug concentrations, avoid systemic adverse effects and improve outcomes for pulmonary infections in CF.
Resumo:
Chronic infection with Pseudomonas aeruginosa is associated with poor outcomes in patients with cystic fibrosis (CF). It leads to a reduced quality of life, acceleration of the decline in lung function, and increased frequency and severity of pulmonary exacerbations. Tobramycin, administered by inhalation as a long-term therapy, decreases bacterial density in airways, reduces exacerbation frequency, and improves quality of life and lung function in patients with chronic P. aeruginosa infection. In the last decade, tobramycin inhalation has become an important contributor to CF treatment as a means to control chronic infection and as a first-line treatment for the eradication of early acquisition of P. aeruginosa. Recently, a dry powder inhalation (DPI) form of tobramycin has become available, which is more convenient for administration and has comparable efficacy to the tobramycin solution. This DPI, the Podhaler™ (Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA), requires less time for treatment delivery and is more portable than a nebulizer, and so is a welcome additional therapeutic option for many patients.