881 resultados para Cadeias de Markov. Algoritmos genéticos
Resumo:
Neste trabalho, objetivou-se estimar as herdabilidades e as correlações genéticas entre os pesos ao nascimento (PN), à desmama (P240), ao ano (P365) e ao sobreano (P550), os ganhos de peso do nascimento à desmama (GND) e do nascimento ao sobreano (GN18), o número de dias para ganhar 175 kg do nascimento à desmama (D175) e para ganhar 450 kg do nascimento ao abate (D450) de machos e fêmeas, o peso adulto (PAD) de fêmeas em um rebanho da raça Canchim visando à definição de critérios de seleção. Foram realizadas análises unicaracteres e bicaracteres pelo método da máxima verossimilhança restrita livre de derivadas utilizando-se modelos estatísticos que incluíram os efeitos fixos de ano e mês de nascimento, sexo do animal, ano e mês do parto, idade do animal ao parto e idade da mãe como covariável (efeitos linear e quadrático), além dos efeitos aleatórios aditivo direto e materno, de ambiente permanente e residual, dependendo da característica. As estimativas de herdabilidade obtidas pelas análises unicaracteres foram iguais a 0,41 (PN), 0,28 (P240), 0,38 (P365), 0,28 (P550), 0,26 (GND), 0,30 (GN18), 0,23 (D175), 0,23 (D450) e 0,48 (PAD), enquanto as estimativas de correlação genética obtidas por análises bicaracteres variaram de 0,28 a 0,97 entre os pesos, de 0,11 a 0,97 entre pesos e ganhos de peso, de 0,00 a -0,98 entre pesos e dias para atingir determinado peso, e de -0,63 a -0,98 entre os ganhos de peso e dias para atingir determinado peso e iguais a 0,69 para GND e GN18 e 0,76 para D175 e D450. Estas estimativas sugerem a possibilidade de se obter progresso genético pela seleção para todas as características estudadas e que a seleção para qualquer uma delas deverá provocar mudanças nas outras.
Resumo:
Foram avaliados 27.523 e 21.746 registros das características conformação, precocidade e musculatura à desmana e ao sobreano, respectivamente, para estimar os componentes de covariância entre estas características e entre estas e os pesos corporais medidos nas mesmas idades. Para as análises dos dados, foram empregados modelos animais com efeitos genéticos direto e materno e efeito de ambiente permanente materno. Máxima verossimilhança restrita foi empregada para estimar os parâmetros genéticos. As estimativas de herdabilidade dos escores à desmama foram 0,13; 0,25 e 0,23 para conformação, precocidade e musculatura, respectivamente. As estimativas de herdabilidade dos escores visuais avaliados ao sobreano foram de maiores magnitudes (0,24; 0,32 e 0,27 para conformação, precocidade e musculatura, respectivamente). As estimativas das correlações genéticas entre escores medidos às mesmas idades, considerando desmana e sobreano, foram 0,67 e 0,75 entre conformação e precocidade; 0,61 e 0,71 entre conformação e musculatura; 0,95 e 0,95 entre precocidade e musculatura. As correlações genéticas estimadas entre o peso corporal à desmama e conformação, precocidade e musculatura, respectivamente, foram 0,97; 0,67 e 0, 62. As estimativas entre conformação, precocidade, musculatura ao sobreano e o peso corporal foram 0,83; 0,59 e 0,58, respectivamente. Os resultados indicam que os escores visuais podem ser utilizados como critérios de seleção. Aumento nos pesos corporais deve ser esperado como resposta correlacionada à seleção para essas características.
Resumo:
Os objetivos neste trabalho foram estudar os efeitos de ambiente sobre a espessura de gordura subcutânea (EGS), a área de olho-de-lombo (AOL) e o peso aos 19 meses de idade e estimar parâmetros genéticos para essas características. Utilizaram-se informações obtidas de 987 bovinos da raça Canchim (5/8 Charolês + 3/8 Zebu) e do grupo genético animal MA (filhos de touros charoleses e vacas 1/2 Canchim + 1/2 Zebu) nascidos em 2003, 2004 e 2005. Os componentes de covariância foram estimados pelo método da máxima verossimilhança restrita utilizando-se um modelo animal com efeitos fixos (ano de nascimento, grupo genético, rebanho e sexo) e os efeitos aleatórios genético aditivo direto e residual. As médias de área de olho-de-lombo e peso foram mais altas nos machos que nas fêmeas. No grupo genético MA, as médias para todas as características foram mais altas que na raça Canchim e houve ainda efeitos de rebanho e de ano de nascimento. As estimativas de herdabilidade para AOL (0,33 ± 0,09), EGS (0,24 ± 0,09) e peso (0,23 ± 0,09) foram moderadas, enquanto que a estimativa de correlação genética (0,21 ± 0,24) entre EGS e AOL foi baixa, o que sugere que essas características são controladas por diferentes conjuntos de genes de ação aditiva. As correlações genéticas para peso estimadas com EGS (0,57 ± 0,23) e com AOL (0,62 ± 0,16) foram moderadas. Conclui-se que as características ao sobreano devem responder à seleção nos rebanhos estudados e que a seleção para aumento de peso também eleva EGS e AOL e vice-versa.
Resumo:
This thesis describes design methodologies for frequency selective surfaces (FSSs) composed of periodic arrays of pre-fractals metallic patches on single-layer dielectrics (FR4, RT/duroid). Shapes presented by Sierpinski island and T fractal geometries are exploited to the simple design of efficient band-stop spatial filters with applications in the range of microwaves. Initial results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as, fractal iteration number (or fractal level), fractal iteration factor, and periodicity of FSS, depending on the used pre-fractal element (Sierpinski island or T fractal). The transmission properties of these proposed periodic arrays are investigated through simulations performed by Ansoft DesignerTM and Ansoft HFSSTM commercial softwares that run full-wave methods. To validate the employed methodology, FSS prototypes are selected for fabrication and measurement. The obtained results point to interesting features for FSS spatial filters: compactness, with high values of frequency compression factor; as well as stable frequency responses at oblique incidence of plane waves. This thesis also approaches, as it main focus, the application of an alternative electromagnetic (EM) optimization technique for analysis and synthesis of FSSs with fractal motifs. In application examples of this technique, Vicsek and Sierpinski pre-fractal elements are used in the optimal design of FSS structures. Based on computational intelligence tools, the proposed technique overcomes the high computational cost associated to the full-wave parametric analyzes. To this end, fast and accurate multilayer perceptron (MLP) neural network models are developed using different parameters as design input variables. These neural network models aim to calculate the cost function in the iterations of population-based search algorithms. Continuous genetic algorithm (GA), particle swarm optimization (PSO), and bees algorithm (BA) are used for FSSs optimization with specific resonant frequency and bandwidth. The performance of these algorithms is compared in terms of computational cost and numerical convergence. Consistent results can be verified by the excellent agreement obtained between simulations and measurements related to FSS prototypes built with a given fractal iteration
Resumo:
This study aims to use a computational model that considers the statistical characteristics of the wind and the reliability characteristics of a wind turbine, such as failure rates and repair, representing the wind farm by a Markov process to determine the estimated annual energy generated, and compare it with a real case. This model can also be used in reliability studies, and provides some performance indicators that will help in analyzing the feasibility of setting up a wind farm, once the power curve is known and the availability of wind speed measurements. To validate this model, simulations were done using the database of the wind farm of Macau PETROBRAS. The results were very close to the real, thereby confirming that the model successfully reproduced the behavior of all components involved. Finally, a comparison was made of the results presented by this model, with the result of estimated annual energy considering the modeling of the distribution wind by a statistical distribution of Weibull
Resumo:
Wireless sensors and actuators Networks specified by IEEE 802.15.4, are becoming increasingly being applied to instrumentation, as in instrumentation of oil wells with completion Plunger Lift type. Due to specific characteristics of the environment being installed, it s find the risk of compromising network security, and presenting several attack scenarios and the potential damage from them. It`s found the need for a more detailed security study of these networks, which calls for use of encryption algorithms, like AES-128 bits and RC6. So then it was implement the algorithms RC6 and AES-128, in an 8 bits microcontroller, and study its performance characteristics, critical for embedded applications. From these results it was developed a Hybrid Algorithm Cryptographic, ACH, which showed intermediate characteristics between the AES and RC6, more appropriate for use in applications with limitations of power consumption and memory. Also was present a comparative study of quality of security among the three algorithms, proving ACH cryptographic capability.
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
Resumo:
A modelagem de processos industriais tem auxiliado na produção e minimização de custos, permitindo a previsão dos comportamentos futuros do sistema, supervisão de processos e projeto de controladores. Ao observar os benefícios proporcionados pela modelagem, objetiva-se primeiramente, nesta dissertação, apresentar uma metodologia de identificação de modelos não-lineares com estrutura NARX, a partir da implementação de algoritmos combinados de detecção de estrutura e estimação de parâmetros. Inicialmente, será ressaltada a importância da identificação de sistemas na otimização de processos industriais, especificamente a escolha do modelo para representar adequadamente as dinâmicas do sistema. Em seguida, será apresentada uma breve revisão das etapas que compõem a identificação de sistemas. Na sequência, serão apresentados os métodos fundamentais para detecção de estrutura (Modificado Gram- Schmidt) e estimação de parâmetros (Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Estendido) de modelos. No trabalho será também realizada, através dos algoritmos implementados, a identificação de dois processos industriais distintos representados por uma planta de nível didática, que possibilita o controle de nível e vazão, e uma planta de processamento primário de petróleo simulada, que tem como objetivo representar um tratamento primário do petróleo que ocorre em plataformas petrolíferas. A dissertação é finalizada com uma avaliação dos desempenhos dos modelos obtidos, quando comparados com o sistema. A partir desta avaliação, será possível observar se os modelos identificados são capazes de representar as características estáticas e dinâmicas dos sistemas apresentados nesta dissertação
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.
Resumo:
In this work, we study and compare two percolation algorithms, one of then elaborated by Elias, and the other one by Newman and Ziff, using theorical tools of algorithms complexity and another algorithm that makes an experimental comparation. This work is divided in three chapters. The first one approaches some necessary definitions and theorems to a more formal mathematical study of percolation. The second presents technics that were used for the estimative calculation of the algorithms complexity, are they: worse case, better case e average case. We use the technique of the worse case to estimate the complexity of both algorithms and thus we can compare them. The last chapter shows several characteristics of each one of the algorithms and through the theoretical estimate of the complexity and the comparison between the execution time of the most important part of each one, we can compare these important algorithms that simulate the percolation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The main specie of marine shrimp raised at Brazil and in the world is Litopenaeus vannamei, which had arrived in Brazil in the `80s. However, the entry of infectious myonecrosis virus (IMNV), causing the infectious myonecrosis disease in marine shrimps, brought economic losses to the national shrimp farming, with up to 70% of mortality in the shrimp production. In this way, the objective was to evaluate the survival of shrimps Litopenaeus vannamei infected with IMNV using the non parametric estimator of Kaplan-Meier and a model of frailty for grouped data. It were conducted three tests of viral challenges lasting 20 days each, at different periods of the year, keeping the parameters of pH, temperature, oxygen and ammonia monitored daily. It was evaluated 60 full-sib families of L. vannamei infected by IMNV in each viral challenge. The confirmation of the infection by IMNV was performed using the technique of PCR in real time through Sybr Green dye. Using the Kaplan-Meier estimator it was possible to detect significant differences (p <0.0001) between the survival curves of families and tanks and also in the joint analysis between viral challenges. It were estimated in each challenge, genetic parameters such as genetic value of family, it`s respective rate risk (frailty), and heritability in the logarithmic scale through the frailty model for grouped data. The heritability estimates were respectively 0.59; 0.36; and 0.59 in the viral challenges 1; 2; and 3, and it was also possible to identify families that have lower and higher rates of risk for the disease. These results can be used for selecting families more resistant to the IMNV infection and to include characteristic of disease resistance in L. vannamei into the genetic improvement programs
Resumo:
The general assumption under which the (X) over bar chart is designed is that the process mean has a constant in-control value. However, there are situations in which the process mean wanders. When it wanders according to a first-order autoregressive (AR (1)) model, a complex approach involving Markov chains and integral equation methods is used to evaluate the properties of the (X) over bar chart. In this paper, we propose the use of a pure Markov chain approach to study the performance of the (X) over bar chart. The performance of the chat (X) over bar with variable parameters and the (X) over bar with double sampling are compared. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents