934 resultados para Cadeia de Markov
Resumo:
An additional ore field in the central part of the MARhas been discovered. Together with previously discovered Logachev (14°45'N) and Ashadze (12°58'N) ore fields, the new ore field constitutes a cluster with preliminarily estimated total ore reserve of >10 Mt, which is comparable with large continental massive sulfide deposits.
Resumo:
An additional ore field in the central part of the MARhas been discovered. Together with previously discovered Logachev (14°45'N) and Ashadze (12°58'N) ore fields, the new ore field constitutes a cluster with preliminarily estimated total ore reserve of >10 Mt, which is comparable with large continental massive sulfide deposits.
Resumo:
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables.