941 resultados para COSMO KENDA LETKF ensemble assimilation
Resumo:
DNA-binding proteins are crucial for various cellular processes, such as recognition of specific nucleotide, regulation of transcription, and regulation of gene expression. Developing an effective model for identifying DNA-binding proteins is an urgent research problem. Up to now, many methods have been proposed, but most of them focus on only one classifier and cannot make full use of the large number of negative samples to improve predicting performance. This study proposed a predictor called enDNA-Prot for DNA-binding protein identification by employing the ensemble learning technique. Experiential results showed that enDNA-Prot was comparable with DNA-Prot and outperformed DNAbinder and iDNA-Prot with performance improvement in the range of 3.97-9.52% in ACC and 0.08-0.19 in MCC. Furthermore, when the benchmark dataset was expanded with negative samples, the performance of enDNA-Prot outperformed the three existing methods by 2.83-16.63% in terms of ACC and 0.02-0.16 in terms of MCC. It indicated that enDNA-Prot is an effective method for DNA-binding protein identification and expanding training dataset with negative samples can improve its performance. For the convenience of the vast majority of experimental scientists, we developed a user-friendly web-server for enDNA-Prot which is freely accessible to the public. © 2014 Ruifeng Xu et al.
Resumo:
The aim of this study is to evaluate the application of ensemble averaging to the analysis of electromyography recordings under whole body vibratory stimulation. Recordings from Rectus Femoris, collected during vibratory stimulation at different frequencies, are used. Each signal is subdivided in intervals, which time duration is related to the vibration frequency. Finally the average of the segmented intervals is performed. By using this method for the majority of the recordings the periodic components emerge. The autocorrelation of few seconds of signals confirms the presence of a pseudosinusoidal components strictly related to the soft tissues oscillations caused by the mechanical waves. © 2014 IEEE.
Resumo:
Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly-conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly-conserved and experimentally-verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96% and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97% and 88% coverage of observed subtypes.
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
The goal of this study was to develop Multinomial Logit models for the mode choice behavior of immigrants, with key focuses on neighborhood effects and behavioral assimilation. The first aspect shows the relationship between social network ties and immigrants’ chosen mode of transportation, while the second aspect explores the gradual changes toward alternative mode usage with regard to immigrants’ migrating period in the United States (US). Mode choice models were developed for work, shopping, social, recreational, and other trip purposes to evaluate the impacts of various land use patterns, neighborhood typology, socioeconomic-demographic and immigrant related attributes on individuals’ travel behavior. Estimated coefficients of mode choice determinants were compared between each alternative mode (i.e., high-occupancy vehicle, public transit, and non-motorized transport) with single-occupant vehicles. The model results revealed the significant influence of neighborhood and land use variables on the usage of alternative modes among immigrants. Incorporating these indicators into the demand forecasting process will provide a better understanding of the diverse travel patterns for the unique composition of population groups in Florida.
Resumo:
Acknowledgements. This work was mainly funded by the EU FP7 CARBONES project (contracts FP7-SPACE-2009-1-242316), with also a small contribution from GEOCARBON project (ENV.2011.4.1.1-1-283080). This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program; DE-FG02-04ER63917 and DE-FG02-04ER63911), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. Philippe Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. The authors wish to thank M. Jung for providing access to the GPP MTE data, which were downloaded from the GEOCARBON data portal (https://www.bgc-jena.mpg.de/geodb/projects/Data.php). The authors are also grateful to computing support and resources provided at LSCE and to the overall ORCHIDEE project that coordinate the development of the code (http://labex.ipsl.fr/orchidee/index.php/about-the-team).
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
American Musicological Society annual meeting, San Francisco, 10 Nov. 2011
Resumo:
First-order transitions of system where both lattice site occupancy and lattice spacing fluctuate, such as cluster crystals, cannot be efficiently studied by traditional simulation methods, which necessarily fix one of these two degrees of freedom. The difficulty, however, can be surmounted by the generalized [N]pT ensemble [J. Chem. Phys. 136, 214106 (2012)]. Here we show that histogram reweighting and the [N]pT ensemble can be used to study an isostructural transition between cluster crystals of different occupancy in the generalized exponential model of index 4 (GEM-4). Extending this scheme to finite-size scaling studies also allows us to accurately determine the critical point parameters and to verify that it belongs to the Ising universality class.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.