942 resultados para COPY NUMBER CHANGES
Resumo:
Planktonic foraminiferal census counts were converted to sea surface temperature (SST) estimates using the modern analogue technique (MAT) for the middle-late Pliocene (4.0-2.37 Ma) in ODP Site 1125, north side of Chatham Rise, SW Pacific Ocean. MAT SST(warm) records range between 8°C and 20.5°C, and MAT SST(cold) records parallel that pattern but with a temperature range of 5-15°C. The modern position of Site 1125 is just north of the Subtropical Front and has an annual temperature range of ~14-18°C. Pliocene warmest temperatures are 1-2° warmer than modern summers, whereas cold season SST records are up to 6-10°C cooler than modern winters. Overall average temperatures at the site are 2-3°C cooler than modern temperatures during a time of sustained global warmth. Three major cold excursions centred on 3.35, 3.0, and 2.8 Ma showed warm season temperatures over 5°C colder than the last glacial maximum, experiencing temperatures typical of modern subantarctic waters. Two minor cold excursions at 2.7 Ma and 2.4 Ma experienced temperatures cooler than modern winters but not as cold as last glacial conditions. Cold season SSTs show a shift to warmer climate upward through the study interval, whereas warm season estimates remain essentially unchanged. We interpret the strong regional cooling of subtropical Southwest Pacific water through the middle-late Pliocene as having been caused by increased upwelling. It is also possible that the subtropical frontal zone moved north over the site in the Pliocene, however, this is considered the least likely interpretation. Our record of cool conditions in the Southwest Pacific corroborate evidence of cooler than modern conditions in other regions of the western Pacific through the mid-Pliocene despite overall global warming.
Resumo:
Sediment samples taken at close intervals across four major unconformities (middle Miocene/upper Miocene, lower Oligocene/upper Oligocene, lower Eocene/upper Eocene, lower Paleocene/upper Paleocene) at DSDP-IPOD Site 548, Goban Spur, reveal that coeval biostratigraphic gaps, sediment discontinuities, and seismic unconformities coincide with postulated low stands of sea level. Foraminiferal, lithic, and isotopic analyses demonstrate that environments began to shift prior to periods of marine erosion, and that sedimentation resumed in the form of turbidites derived from nearby upper-slope sources. The unconformities appear to have developed where a water-mass boundary intersected the continental slope, rhythmically crossing the drill site in concert with sea-level rise and fall.
Resumo:
We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.
Resumo:
Changes in glaciers and ice caps provide some of the clearest evidence of climate change, and as such they constitute key variables for early detection strategies in global climate-related observations. These changes have impacts on global sea level fluctuations, the regional to local natural hazard situation, as well as on societies dependent on glacier meltwater. Internationally coordinated collection and publication of standardised information about ongoing glacier changes was initiated back in 1894. The compiled data sets on the global distribution and changes in glaciers and ice caps provide the backbone of the numerous scientific publications on the latest findings about surface ice on land. Since the very beginning, the compiled data has been published by the World Glacier Monitoring Service and its predecessor organisations. However, the corresponding data tables, formats and meta-data are mainly of use to specialists.
Resumo:
Palaeoclimatic and paleoenvironmental high latitude records in the Southern Hemisphere are scarce compared to the northern counterpart. However, understanding global evolution of environmental systems during sudden climate changes is inseparable from an equivalent knowledge of both Hemispheres. In this context, a high-resolution study of lacustrine sediments from Laguna Potrok Aike, Santa Cruz province, Patagonia, Argentina, was conducted for the Lateglacial period using concurrent X-Ray Fluorescence (XRF) and Scanning electron microscope analyses. Peaks of Ca/Si and Mn, and occurrences of the green alga Phacotus lenticularis have been interpreted as variations in ventilation of the water column from 13.6 to 11.1 ka cal. BP. During this interval, mild climate conditions during the Younger Dryas are characterized by relatively weak westerlies favouring the formation of a stratified water body as indicated by preserved manganese and Ca/Si peaks and high Total Organic Carbon (TOC) values. In this environment, water in the epilimnion can reach sufficiently high temperature to allow P. lenticularis to grow. Colder conditions are marked by peaks in Ca without P. lenticularis and occur during the Antarctic Cold Reversal (ACR). In this Lateglacial interval, micropumices were also detected in large amount. Image analysis of thin sections allowed the counting and size measurement of detrital particles and micropumices separately. Micropumices significantly influence the iron and titanium content, hence preventing to use them as proxies of detrital input in this interval.
Resumo:
Peat plateaus are widespread at high northern latitudes and are important soil organic carbon reservoirs. A warming climate can cause either increased ground subsidence (thermokarst) resulting in lake formation or increased drainage as the permafrost thaws. A better understanding of spatiotemporal variations in these landforms in relation to climate change is important for predicting the future thawing permafrost carbon feedback. In this study, dynamics in thermokarst lake extent during the last 35-50 years has been quantified through time series analysis of aerial photographs and high-resolution satellite images (IKONOS/QuickBird) in three peat plateau complexes, spread out across the northern circumpolar region along a climatic and permafrost gradient. From the mid-1970s until the mid-2000s there has been an increase in mean annual air temperature, winter precipitation, and ground temperature in all three study areas. The two peat plateaus located in the continuous and discontinuous permafrost zones, respectively, where mean annual air temperatures are below -5°C and ground temperatures are -2°C or colder, have experienced small changes in thermokarst lake extent. In the peat plateau located in the sporadic permafrost zone where the mean annual air temperature is around -3°C, and the ground temperature is close to 0°C, lake drainage and infilling with fen vegetation has been extensive and many new thermokarst lakes have formed. In a future progressively warmer and wetter climate permafrost degradation can cause significant impacts on landscape composition and greenhouse gas exchange also in areas with extensive peat plateaus, which presently still experience stable permafrost conditions.
Resumo:
Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 x 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (<3.5 cm diameter at breast height) were estimated during 2009-2010 and compared with historical documentation from 1976 to 1977. Similarly, all tree stems (>=3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.
Resumo:
Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km**3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002-2009 leads to a small negative contribution to sea level of -0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ~0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.
Resumo:
A 30-year series (1978-2007) of photographic records were analysed to determine changes in lake ice cover, local (low elevation) and montane (high elevation) snow cover and phenological stages of mountain birch (Betula pubescens ssp. czerepanovii) at the Abisko Scientific Research Station, Sweden. In most cases, the photographic-derived data showed no significant difference in phenophase score from manually observed field records from the same period, demonstrating the accuracy and potential of using weekly repeat photography as a quicker, cheaper and more adaptable tool to remotely study phenology in both biological and physical systems. Overall, increases in ambient temperatures coupled with decreases in winter ice and snow cover, and earlier occurrence of birch foliage, signal a reduction in the length of winter, a shift towards earlier springs and an increase in the length of available growing season in the Swedish sub-arctic.
Resumo:
The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by 20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.