994 resultados para CONWAY-MAXWELL POISSON (COMP) DISTRIBUTION
Resumo:
Enregistrement : Paris, Université de Paris, La Sorbonne, 07-05-1913
Resumo:
Enregistrement : Paris, Université de Paris, La Sorbonne, 22-04-1913
Resumo:
The metabolism of Δ(9)-tetrahydrocannabinol (THC) is relatively complex, and over 80 metabolites have been identified. However, much less is known about the formation and fate of cannabinoid conjugates. Bile excretion is known to be an important route for the elimination of phase II metabolites. A liquid chromatography-tandem mass spectrometry LC-MS/MS procedure for measuring cannabinoids in oral fluid was adapted, validated and applied to 10 bile samples. THC, 11-hydroxy-Δ(9)-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THCCOOH), cannabinol (CBN), cannabidiol (CBD), Δ(9)-tetrahydrocannabinolic acid A (THC-A), 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol glucuronide (THCCOOH-gluc) and Δ(9)-tetrahydrocannabinol glucuronide (THC-gluc) were determined following solid-phase extraction and LC-MS/MS. High concentrations of THCCOOH-gluc were found in bile samples (range: 139-21,275 ng/mL). Relatively high levels of THCCOOH (7.7-1548 ng/mL) and THC-gluc (38-1366 ng/mL) were also measured. THC-A, the plant precursor of THC, was the only cannabinoid that was not detected. These results show that biliary excretion is an important route of elimination for cannabinoids conjugates and that their enterohepatic recirculation is a significant factor to consider when analyzing blood elimination profiles of cannabinoids. Furthermore, we suggest that the bile is the matrix of choice for the screening of phase II cannabinoid metabolites.
Resumo:
Ce cahier fournit les principales informations concernant les durées de séjour et le nombre de sorties observées dans 33 hôpitaux suisses pour l'années 1984. La description des clientèles hospitalières est fondée sur les "Diagnosis Related Groups" (DRG), qui forment une classification de 472 groupes de patients hospitalisés. [Auteurs, p. 1]
Resumo:
We study the damage enhanced creep rupture of disordered materials by means of a fiber bundle model. Broken fibers undergo a slow stress relaxation modeled by a Maxwell element whose stress exponent m can vary in a broad range. Under global load sharing we show that due to the strength disorder of fibers, the lifetime ʧ of the bundle has sample-to-sample fluctuations characterized by a log-normal distribution independent of the type of disorder. We determine the Monkman-Grant relation of the model and establish a relation between the rupture life tʄ and the characteristic time tm of the intermediate creep regime of the bundle where the minimum strain rate is reached, making possible reliable estimates of ʧ from short term measurements. Approaching macroscopic failure, the deformation rate has a finite time power law singularity whose exponent is a decreasing function of m. On the microlevel the distribution of waiting times is found to have a power law behavior with m-dependent exponents different below and above the critical load of the bundle. Approaching the critical load from above, the cutoff value of the distributions has a power law divergence whose exponent coincides with the stress exponent of Maxwell elements
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Resumo:
Review of Alternative Distribution Methodologies for the Street Construction Fund of the Cities
Resumo:
Référence bibliographique : Rol, 57063
Resumo:
Référence bibliographique : Rol, 57334
Resumo:
A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics
Resumo:
State Agency Audit Report