950 resultados para CO2-EXPANDED SOLVENTS
Resumo:
PURPOSE: To retrospectively evaluate the midterm patency rate of the nitinol (Viatorr, W.L. Gore and Associates, Flagstaff, Ariz) stent-graft for direct intrahepatic portacaval shunt (DIPS) creation. MATERIALS AND METHODS: Institutional Review Board approval for this retrospective HIPAA-compliant study was obtained with waiver of informed consent. DIPS was created in 18 men and one woman (median age, 54 years; range, 45-65 years) by using nitinol polytetrafluoroethylene (PTFE)-covered stent-grafts. The primary indications were intractable ascites (n = 14), acute variceal bleeding (n = 3), and hydrothorax (n = 2). Follow-up included Doppler ultrasonography at 1, 6, and 12 months and venography with manometry at 6-month intervals after the procedure. Shunt patency and cumulative survival were evaluated by using the Kaplan-Meier method and survival curves were plotted. Differences in mean portosystemic gradients (PSGs) were evaluated by using the Student t test. Multiple regression analysis for survival and DIPS patency were performed for the following parameters: Child-Pugh class, model of end-stage liver disease score, pre- and post-DIPS PSGs, pre-DIPS liver function tests, and pre-DIPS creatinine levels. RESULTS: DIPS creation was successful in all patients. Effective portal decompression and free antegrade shunt flow was achieved in all patients. Intraperitoneal bleeding occurred in one patient during the procedure and was controlled during the same procedure by placing a second nitinol stent-graft. The primary patency rate was 100% at all times during the follow-up period (range, 2 days to 30 months; mean, 256 days; median, 160 days). Flow restrictors were deployed in two (11%) of 19 patients. The 1-year mortality rate was 37% (seven of 19). CONCLUSION: Patency after DIPS creation with the nitinol PTFE-covered stent-graft was superior to that after TIPS with the nitinol stent-graft.
Resumo:
AIMS: To describe the procedural performance and 30-day outcomes following implantation using the 18 Fr CoreValve Revalving System (CRS) as part of the multicentre, expanded evaluation registry, 1-year after obtaining CE mark approval. METHODS AND RESULTS: Patients with symptomatic severe aortic stenosis and logistic Euroscore > or =15%, or age > or =75 years, or age > or =65 years associated with pre-defined risk factors, and for whom a physician proctor and a clinical specialist were in attendance during the implantation and who collected the clinical data, were included. From April 2007, to April 2008, 646 patients with a mean age of 81 +/- 6.6 years, mean aortic valve area 0.6 +/- 0.2 cm2, and logistic EuroSCORE of 23.1 +/- 13.8% were recruited. After valve implantation, the mean transaortic valve gradient decreased from 49.4 +/- 13.9 to 3 +/- 2 mmHg. All patients had paravalvular aortic regurgitation < or = grade 2. The rate of procedural success was 97%. The procedural mortality rate was 1.5%. At 30 days, the all-cause mortality rate (i.e, including procedural) was 8% and the combined rate of death, stroke and myocardial infarction was 9.3%. CONCLUSIONS: The results of this study demonstrate the high rate of procedural success and a low 30-day mortality in a large cohort of high-risk patients undergoing transcatheter aortic valve implantation (TAVI) with the CRS.
Resumo:
Anthropogenic activities continue to drive atmospheric CO2 and O3 concentrations to levels higher than during the pre-industrial era. Accumulating evidence indicates that both elevated CO2 and elevated O3 could modify the quantity and biochemistry of woody plant biomass. Anatomical properties of woody plants are largely influenced by the activity of the cambium and the growth characteristics of wood cells, which are in turn influenced by a range of environmental factors. Hence, alterations in the concentrations of atmospheric CO2 and / or O3 could also impact wood anatomical properties. Many fungi derive their metabolic resources for growth from plant litter, including woody tissue, and therefore modifications in the quantity, biochemistry and anatomical properties of woody plants in response to elevated CO2 and / or O3 could impact the community of wood-decaying fungi and rates of wood decomposition. Consequently carbon and nutrient cycling and productivity of terrestrial ecosystem could also be impacted. Alterations in wood structure and biochemistry of woody plants could also impact wood density and subsequently impact wood quality. This dissertation examined the long term effects of elevated CO2 and / or O3 on wood anatomical properties, wood density, wood-decaying fungi and wood decomposition of northern hardwood tree species at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project, near Rhinelander, WI, USA. Anatomical properties of wood varied significantly with species and aspen genotypes and radial position within the stem. Elevated CO2 did not have significant effects on wood anatomical properties in trembling aspen, paper birch or sugar maple, except for marginally increasing (P < 0.1) the number of vessels per square millimeter. Elevated O3 marginally or significantly altered vessel lumen diameter, cell wall area and vessel lumen area proportions depending on species and radial position. In line with the modifications in the anatomical properties, elevated CO2 and O3, alone, significantly modified wood density but effects were species and / or genotype specific. However, the effects of elevated CO2 and O3, alone, on wood anatomical properties and density were ameliorated when in combination. Wood species had a much greater impact on the wood-decaying fungal community and initial wood decomposition rate than did growth or decomposition of wood in elevated CO2 and / or O3. Polyporales, Agaricales, and Russulales were the dominant orders of fungi isolated. Based on the current results, future higher levels of CO2 and O3 may have moderate effects on wood quality of northern hardwoods, but for utilization purposes these may not be considered significant. However, wood-decaying fungal community composition and decomposition of northern hardwoods may be altered via shifts in species and / or genotype composition under future higher levels of CO2 and O3.
Resumo:
Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy (PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used to observe the features of the flakes. N-methyl-2-pyrrolidinone (NMP), dimethylformamide (DMF), and isopropanol are used as co-solvents to enhance the supercritical carbon dioxide treatment. As a result, the PCS results show that the flakes obtained from high critical density treatment (low temperature and high pressure) are more stable due to more negative charges of zeta potential, but have smaller sizes than those from low critical density (high temperature and low pressure). However, when an additional 1-hour sonication is applied, the size of the flakes from low critical density treatment becomes smaller than those from high critical density treatment. This is probably due to more CO2 molecules stacked between the layers of the graphitic flakes. The zeta potentials of the sonicated samples were slightly more negative than nonsonicated samples. NMP and DMF co-solvents maintain stability and prevented reaggregation of the flakes better than isopropanol. The flakes tend to be larger and more stable as the treatment time increases since larger flat area of graphite is exfoliated. In these experiments, the temperature has more impact on the flakes than pressure. The BET surface area resultsshow that CO2 penetrates the graphite layers more than N2. Moreover, the negative surface area of the treated graphite indicates that the CO2 molecules may be adsorbed between the graphite layers during supercritical treatment. The FE-SEM and AFM images show that the flakes have various shapes and sizes. The effects of surfactants can be observed on the FE-SEM images of the samples in one percent by weight solution of SDBS in water since the sodium dodecylbenzene sulfonate (SDBS) residue covers all of the remaining flakes. The AFM images show that the vertical thickness of the graphitic flakes can ranges from several nanometers (less than ten layers thick), to more than a hundred nanometers. In conclusion, supercritical carbon dioxide treatment is a promising step compared to mechanical and chemical exfoliation techniques in the large scale production of thin graphitic flake, breaking down the graphite flakes into flakes only a fewer graphene layers thick.
Resumo:
Ventral mesencephalic (VM) precursor cells are of interest in the search for transplantable dopaminergic neurons for cell therapy in Parkinson's disease (PD). In the present study we investigated the survival and functional capacity of in vitro expanded, primary VM precursor cells after intrastriatal grafting to a rat model of PD. Embryonic day 12 rat VM tissue was mechanically dissociated and cultured for 4 or 8 days in vitro (DIV) in the presence of FGF2 (20 ng/ml), FGF8 (20 ng/ml) or without mitogens (control). Cells were thereafter differentiated for 6 DIV by mitogen withdrawal and addition of serum. After differentiation, significantly more tyrosine hydroxylase-immunoreactive (TH-ir), dopamine-producing neurons were found in FGF2- and FGF8-expanded cultures compared to controls. Moreover, expansion for 4 DIV resulted in significantly more TH-ir cells than expansion for 8 DIV both for FGF2 (2.4 fold; P<0.001) and FGF8 (3.8 fold; P<0.001) treated cultures. The functional potential of the expanded cells (4 DIV) was examined after grafting into striatum of aged 6-hydroxydopamine-lesioned rats. Amphetamine-induced rotations performed 3, 6 and 9 weeks postgrafting revealed that grafts of FGF2-expanded cells induced a significantly faster and better functional recovery than grafts of FGF8-expanded cells or control cells (P<0.05 for both). Grafts of FGF2-expanded cells also contained significantly more TH-ir cells than grafts of FGF8-expanded cells (P<0.05) or control cells (P<0.01). In conclusion, FGF2-mediated pregrafting expansion of primary VM precursor cells considerably improves dopaminergic cell survival and functional restoration in a rat model of PD.
Resumo:
Metal-organic frameworks (MOFs) obtained much attention because of their unusual structures and properties as well as their potential applications. This dissertation research was focused on (1) the effects of synthesis conditions on the structures of MOFs, (2) the thermal stability of MOFs, (3) pressure-induced amorphization, and (4) the effect of high-valent ions on the structure of a MOF. This research demonstrated that the crystal structure of MOF-5 could be controlled by drying solvents. If the vacuum solvent is dimethylformamide (DMF), the crystal structure of MOF-5 is tetragonal. In contrast, if the DMF is displaced by CH2Cl2 before the vacuum, the obtained MOF-5 occupies a cubic structure. Furthermore, it was found that the tetragonal MOF-5 exhibited a mediate surface area (300-1000 m2/g). The surface area of tetragonal MOF-5 is also dependent on Zn(NO3)2/H2BDC (H2BDC: terephthalic acid) molar ratios used for its synthesis. The optimum ratio is 1.38, at which synthesized tetragonal MOF-5 exhibits the highest crystallinity and surface area (1297 m2/g). The thermal stability and decomposition of MOF-5 were systematically investigated. The thermal decomposition of cubic and tetragonal MOF-5s resulted in the same products: CO2, benzene, amorphous carbon, and crystal ZnO. The thermal decomposition is due to breaking carboxylic bridges between benzene rings and Zn4O clusters. Identifying structural relationships between crystalline and noncrystalline states is of fundamental interest in materials research. Currently, amorphization of solid materials at ambient temperature requires an ultra-high pressure (several GPa). However, this research demonstrated that MOF-5 and IRMOF-8 can be irreversibly amorphized at ambient temperature by employing a low compressing pressure of 3.5 MPa, which is 100 times lower than that required for amorphization of other solids. Furthermore, the pressure-induced amorphization (PIA) of MOFs is strongly dependent on the changeability of bond angles. If the geometric structure of a MOF can allow bond angles to be changed without breaking bonds, it can easily be amorphized by compression. This can explain why MOF-5 and IRMOF-8 can easily be amorphized via compression than Cu-BTC. It is generally recognized that zeolitic imidazolate frameworks (ZIFs) occupy much higher stability than other types of MOFs. The representative of ZIFs is Zn(2-methylimidazole)2 (ZIF-8) exhibiting high-decomposition temperature and high chemical resistance to various solvents. However, so far, it is still unknown whether the high stability of ZIF-8 can be challenged by ions, which is important for its modification by doping ions. In this research, we performed aqueous salt solution treatment on ZIF-8, and the results showed that anions (Cl¯ and NO3¯) in a solution exhibited no effect on the crystal structure of ZIF-8. However, the effect of cations (in a solution) on structure of ZIF-8 strongly depends on the cation valences. The univalent metal cations showed no effect on the structure of ZIF-8, whereas the bivalent or higher-valent metal cations caused the collapse of ZIF-8 crystal structure. Therefore, structure stability of ZIF-8 is considered when it is subjected to the application, in which high-valent metal cations are involved.
Resumo:
We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm), the fraction of CO2 emitted that is absorbed by the ocean is: 37±8%, 56±10%, and 81±4% (model mean ±2σ ) in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs) and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feedbacks in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.