961 resultados para CHROMATOGRAPHY-MASS-SPECTROMETRY
Resumo:
The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.
Resumo:
Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.
Resumo:
A crude Sohxlet extract from leaves of Syzygium jambos was sequentially fractionated using a silica gel flash column. A bioassay based on the numbers of urediniospores of Puccinia psidii that germinated in 2% water agar detected an active stimulant of germination when the fraction eluted with 100% n-hexane was used. The active fraction induced up to 88% increase in germination when added to a spore suspension in mineral oil. The active fraction was characterized as a hydrocarbon by ¹H nuclear magnetic resonance, 13C nuclear magnetic resonance, and infrared analysis. Gas chromatography-mass spectrometry analysis indicated that the fraction was a long-chain 436 MW hydrocarbon with corresponding to C31H64, namely hentriacontane. This is the first time such a compound proved to be involved with stimulation of fungal spore germination. These results may contribute to better understanding the infection process of rusts.
Resumo:
Pera glabrata (Schott) Baill. was selected for this study after showing a preliminary positive result in a screening of Atlantic Forest plant species in the search for acetylcholinesterase inhibitors and antifungal compounds. The bioassays were conducted with crude ethanol extract of the leaves using direct bioautography method for acetylcholinesterase and antifungal activities. This extract was partitioned with hexane, chloroform and ethyl acetate solvents. The active chloroform fraction was submitted to silica gel chromatography column affording 12 groups. Caffeine, an alkaloid, which showed detection limits of 0.1 and 1.0 µg for anticholinesterasic and antifungal activities, respectively, was isolated from group nine. After microplate analyses, only groups four, nine, 10, 11 and 12 showed acetylcholinesterase inhibitory activity of 40% or higher. The group 12 was purified by preparative layer chromatography affording four sub-fractions. Two sub-fractions from this group were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. The first sub-fraction showed anticholinesterasic activity and contained two major compounds: 9-hydroxy-4-megastigmen-3-one (84%) and caffeine (6%). The second sub-fraction presented five major compounds identified as 9-hydroxy-4-megastigmen-3-one, isololiolide, (-) loliolide, palmitic acid and lupeol and did not show activity.
Resumo:
The cytotoxicity of three extracts (petroleum ether, ethyl acetate and n-butanol) from a plant used in folk medicine, Marchantia convoluta, to human non-small cell lung carcinoma (H1299) and liver carcinoma (HepG2) cell lines was tested. After 72-h incubation of lung and liver cancer cell cultures with varying concentrations of extracts (15 to 200 µg/mL), cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and reported in terms of cell viability. The extracts that showed a significant cytotoxicity were subjected to gas chromatography-mass spectrometry analysis to identify the components. The ethyl acetate, but not the petroleum ether or n-butanol extract, had a significant cytotoxicity against lung and liver carcinoma cells with IC50 values of 100 and 30 µg/mL, respectively. A high concentration of ethyl acetate extract (100 µg/mL) rapidly reduced the number of H1299 cells. At lower concentrations of ethyl acetate extract (15, 30, and 40 µg/mL), the numbers of HepG2 cells started to decrease markedly. Gas chromatography-mass spectrometry analysis of the ethyl acetate extract revealed the presence of several compounds such as phytol (23.42%), 1,2,4-tripropylbenzene (13.09%), 9-cedranone (12.75%), ledene oxide (7.22%), caryophyllene (1.82%), and caryophyllene oxide (1.15%). HPLC analysis result showed that there were no flavonoids in ethyl acetate extract, but flavonoids are abundant in n-butanol extract. Further studies are needed regarding the identification, toxicity, and mechanism of action of active compounds.
Resumo:
β-ionone (βI), a cyclic isoprenoid, and geraniol (GO), an acyclic monoterpene, represent a promising class of dietary chemopreventive agents against cancer, whose combination could result in synergistic anticarcinogenic effects. The chemopreventive activities of βI and GO were evaluated individually or in combination during colon carcinogenesis induced by dimethylhydrazine in 48 3-week-old male Wistar rats (12 per group) weighing 40-50 g. Animals were treated for 9 consecutive weeks with βI (16 mg/100 g body weight), GO (25 mg/100 g body weight), βI combined with GO or corn oil (control). Number of total aberrant crypt foci (ACF) and of ACF ≥4 crypts in the distal colon was significantly lower in the GO group (66 ± 13 and 9 ± 2, respectively) compared to control (102 ± 9 and 17 ± 3) and without differences in the βI (91 ± 11 and 14 ± 3) and βI+GO groups (96 ± 5 and 19 ± 2). Apoptosis level, identified by classical apoptosis morphological criteria, in the distal colon was significantly higher in the GO group (1.64 ± 0.06 apoptotic cells/mm²) compared to control (0.91 ± 0.07 apoptotic cells/mm²). The GO group presented a 0.7-fold reduction in Bcl-2 protein expression (Western blot) compared to control. Colonic mucosa concentrations of βI and GO (gas chromatography/mass spectrometry) were higher in the βI and GO groups, respectively, compared to the control and βI+GO groups. Therefore, GO, but not βI, represents a potential chemopreventive agent in colon carcinogenesis. Surprisingly, the combination of isoprenoids does not represent an efficient chemopreventive strategy.
Resumo:
(+)-Dehydrofukinone (DHF) is a major component of the essential oil of Nectandra grandiflora (Lauraceae), and exerts a depressant effect on the central nervous system of fish. However, the neuronal mechanism underlying DHF action remains unknown. This study aimed to investigate the action of DHF on GABAA receptors using a silver catfish (Rhamdia quelen) model. Additionally, we investigated the effect of DHF exposure on stress-induced cortisol modulation. Chemical identification was performed using gas chromatography-mass spectrometry and purity was evaluated using gas chromatography with a flame ionization detector. To an aquarium, we applied between 2.5 and 50 mg/L DHF diluted in ethanol, in combination with 42.7 mg/L diazepam. DHF within the range of 10-20 mg/L acted collaboratively in combination with diazepam, but the sedative action of DHF was reversed by 3 mg/L flumazenil. Additionally, fish exposed for 24 h to 2.5-20 mg/L DHF showed no side effects and there was sustained sedation during the first 12 h of drug exposure with 10-20 mg/L DHF. DHF pretreatment did not increase plasma cortisol levels in fish subjected to a stress protocol. Moreover, the stress-induced cortisol peak was absent following pretreatment with 20 mg/L DHF. DHF proved to be a relatively safe sedative or anesthetic, which interacts with GABAergic and cortisol pathways in fish.
Resumo:
Ethanolic extracts and essential oils from Green Propolis from southeastern Brazil and leaf buds from its botanical origin Baccharis dracunculifolia were analyzed by Reversed Phase High Performance Liquid Chromatography (RP-HPLC), Reversed Phase High Performance Thin Layer Chromatography (RP-HPTLC) and Gas Chromatography - Mass Spectrometry (GC-MS). The essential oils were obtained by hydro-distillation. Both ethanolic extracts and essential oils showed similar chromatographic profiles. Thirteen flavonoids were identified by RP-HPLC and RP-HPTLC analyses in both samples. Twenty-three volatile compounds were identified by GC-MS analyses. Seventeen were present in both essential oils. The major flavonoid compound in both extracts was artepillin C. The major volatile compound in both essential oils was nerolidol. The major compounds identified in this work could be used as chemical markers in order to classify and identify botanical origins of propolis.
Resumo:
This study aimed at assessing the stability of passion fruit juice in glass bottles during a 120-day storage period, regarding its volatile compounds profile and sensory properties (aroma and flavor). Samples were obtained from a Brazilian tropical juice industry (Fortaleza, Brazil) and submitted to sensory and chromatographic analyses. The characteristic aroma and flavor of passion fruit were evaluated by a trained panel with a non-structured scale of 9 cm. The headspace volatile compounds were isolated from the product by suction and trapped in Porapak Q, analyzed through high-resolution gas chromatography and identified through gas chromatography-mass spectrometry (GC-MS). Twelve odoriferous compounds were monitored: ethyl butanoate, ethyl propanoate, 3-methyl-1-butanol, 3-methyl-2-butenol, (E)-3-hexenol, (Z)-3-hexenol, 3-methylbutyl acetate, benzaldehyde, ethyl hexanoate, hexyl acetate, limonene and furfural. The slight variations observed in the volatile profile were not enough to provoke significant changes in the characteristic aroma and flavor of the passion fruit juice.
Resumo:
The volatile compositions from organic and conventional passion fruit pulps produced in Brazil were investigated. The pulps were also physicochemically characterized. The volatile compounds from the headspace of the passion fruit pulp were stripped to a Porapak Q trap for 2 hours; they were eluted with 300 µL of dichloromethane, separated by gas chromatography/flame ionisation detection and identified through gas chromatography/mass spectrometry. Both pulps conformed to the requirements of the Brazilian legislation, indicating they were suitable to be industrialized and consumed. A total of 77 compounds were detected in the headspace of the passion fruit pulps - 60 of which were identified, comprising 91% of the total chromatogram area. The major compounds were the following: ethyl butanoate, 52% and 57% of the total relative area of the chromatogram for the organic and conventional passion fruit pulps, respectively; ethyl hexanoate, 22% and 9%, respectively; and hexyl butanoate, 2% and 5%, respectively. The aroma of the organic passion fruit pulp is mainly related to the following volatile compounds: ethyl hexanoate, methyl hexanoate, β-myrcene and D-limonene. The conventional passion fruit pulp presented methyl butanoate, butyl acetate, hexanal, 1-butanol, butyl butanoate, trans-3-hexenyl acetate, cis-3-hexen-1-ol, butyl hexanoate, hexyl butanoate, 3-hexenyl butanoate and 3-hexenyl hexanoate as the main volatile compounds for aroma.
Resumo:
Increased preference for healthy and functional foods could be an opportunity to increase the consumption of clarified cashew apple juice. Given its level of fructose, glucose, and vitamin C, it can be used as a base in blends. However, its characteristic odor can interfere with the acceptance of these formulations, especially by consumers who are not familiar with cashew aroma. The aim of this study was to evaluate the effect of treatment with macroporous resins (FPA54, FPX66, XAD761, and XAD4) on the volatile profile and physicochemical characteristics of clarified cashew apple juice. After the treatment with the resins, the volatile profile was evaluated using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). The physicochemical analyses performed were: pH, soluble solids (ºBrix), total titrable acidity, reducing sugars, and vitamin C. Gas chromatography analyses showed that XAD4 and FPX66 led to a reduction of the initial amount of volatile compounds to 14.05% and 15.72%, respectively. These two resins also did not affect the physicochemical characteristics of the clarified cashew apple juice.
Resumo:
The aim of this study was to extract and identify volatile compounds from pineapple residues generated during concentrated juice processing. Distillates of pineapple residues were obtained using the following techniques: simple hydrodistillation and hydrodistillation by passing nitrogen gas. The volatile compounds present in the distillates were captured by the solid-phase microextraction technique. The volatile compounds were identified in a system of high resolution gas chromatography system coupled with mass spectrometry using a polyethylene glycol polar capillary column as stationary phase. The pineapple residues constituted mostly of esters (35%), followed by ketones (26%), alcohols (18%), aldehydes (9%), acids (3%) and other compounds (9%). Odor-active volatile compounds were mainly identified in the distillate obtained using hydrodistillation by passing nitrogen gas, namely decanal, ethyl octanoate, acetic acid, 1-hexanol, and ketones such as γ-hexalactone, γ-octalactone, δ-octalactone, γ-decalactone, and γ-dodecalactone. This suggests that the use of an inert gas and lower temperatures helped maintain higher amounts of flavor compounds. These data indicate that pineapple processing residue contained important volatile compounds which can be extracted and used as aroma enhancing products and have high potential for the production of value-added natural essences.
Resumo:
Chloropropanols, including 3-monochloropropane-1,2-diol (3-MCPD) and 1,3-dichloropropan-2-ol (1,3-DCP), comprise a group of chemical contaminants with carcinogenic and genotoxic properties. They have been found in a variety of processed foods and food ingredients, such as hydrolyzed vegetable protein, soy sauce, cereal-based products, malt-derived ingredients, and smoked foods. This study aimed to assess the dietary exposure to 3-MCPD and 1,3-DCP in Brazil and verify whether the presence of these substances in foods could represent health risks. The intake was calculated by combining data on food consumption, provided by the Consumer Expenditure Survey 2008-2009, with the levels of contaminant occurrence determined by gas chromatography-mass spectrometry. The exposure to 3-MCPD ranged from 0.06 to 0.51 µg.kg bw-1.day-1 considering average and high consumers, while the intake of 1,3-DCP was estimated to be 0.0036 µg.kg bw-1.day-1 in the worst case scenario evaluated. Based on these results, it was verified that the Brazilians' exposure to chloropropanols does not present a significant health risk. However, the consumption of specific foods containing high levels of 3-MCPD could exceed the provisional maximum tolerable daily intake of 2 µg.kg bw-1 established for this compound and, therefore, represent a potential concern.
Resumo:
Demand for organic products is intensified in many countries each year. Following this trend, Brazil produces increasing volumes of organic grape juice. In this way, a survey of organic grape juices made from grapes produced according to this system was carried out where physicochemical composition, minerals, trace elements, and pesticide residues were determined. Variables related to grape juice composition were performed by physicochemical procedures; minerals and trace elements, by inductively plasma optical emission spectrometry; pesticide residues, by liquid chromatography-mass spectrometry. Main results show that the physicochemical composition of organic grape juices was in general in accordance to the Brazilian legislation. The mean concentrations of trace elements were very low, varying from 0.002 (Cd) to 0.970 (Ba) mg L–1. Pesticide residues were not detected in any sample analyzed (MRL= 10 µg L–1). These results show that the Serra Gaúcha viticultural region present conditions to produce organic grape juices, despite the adverse climate factors that occurs in some years. Nevertheless, these products should be made with grape varieties, such as the labrusca ones, less susceptibles to the main grapevine pathogens.
Resumo:
Lysinuric protein intolerance (LPI) is a recessively inherited disorder characterised by reduced plasma and increased urinary levels of cationic amino acids (CAAs), protein malnutrition, growth failure and hyperlipidemia. Some patients develop severe immunological, renal and pulmonary complications. All Finnish patients share the same LPIFin mutation in the SLC7A7 gene that encodes CAA transporter y+LAT1. The aim of this study was to examine molecular factors contributing to the various symptoms, systemic metabolic and lipid profiles, and innate immune responses in LPI. The transcriptomes, metabolomes and lipidomes were analysed in whole-blood cells and plasma using RNA microarrays and gas or liquid chromatography-mass spectrometry techniques, respectively. Toll-like receptor (TLR) signalling in monocyte-derived macrophages exposed to pathogens was scrutinised using qRT-PCR and the Luminex technology. Altered levels of transcripts participating in amino acid transport, immune responses, apoptosis and pathways of hepatic and renal metabolism were identified in the LPI whole-blood cells. The patients had increased non-essential amino acid, triacylglycerol and fatty acid levels, and decreased plasma levels of phosphatidylcholines and practically all essential amino acids. In addition, elevated plasma levels of eight metabolites, long-chain triacylglycerols, two chemoattractant chemokines and nitric oxide correlated with the reduced glomerular function in the patients with kidney disease. Accordingly, it can be hypothesised that the patients have increased autophagy, inflammation, oxidative stress and apoptosis, leading to hepatic steatosis, uremic toxicity and altered intestinal microbe metabolism. Furthermore, the LPI macrophages showed disruption in the TLR2/1, TLR4 and TLR9 pathways, suggesting innate immune dysfunctions with an excessive response to bacterial infections but a deficient viral DNA response.