967 resultados para CHANDRASEKHAR MASS MODELS
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
Death adders (genus Acanthophis) are unique among elapid snakes in both morphology and venom composition. Despite this genus being among the most divergent of all elapids, the venom has been historically regarded as relatively quite simple. In this study, liquid chromatography/mass spectrometry (LC/MS) analysis has revealed a. much greater diversity in venom composition, including the presence of molecules of novel molecular weights that may represent a new class of venom component. Furthermore, significant variation exists between species and populations,, which allow for the LC/MS fingerprinting of each species. Mass profiling of Acanthophis venoms clearly demonstrates the effectiveness of this technique which underpins fundamental studies ranging from chemotaxonomy to drug design. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Evaporative cooling is extremely important for large-scale operation of rotating drum bioreactors (RDBs). Outlet water vapour concentrations were measured for a RDB containing wet wheat bran with the aim of determining the mass transfer coefficient for evaporation from the bran bed to the headspace. Mass transfer was expressed as the mass transfer coefficient times the area for transfer per unit volume of void space in the drum. Values of ka' were determined under combinations of aeration superficial velocities ranging from 0.006 to 0.017 ms(-1) and rotation rates ranging from 0 to 9 rpm. Mass transfer coefficients were evaluated using a variety of residence time distributions (RTDs) for flow in the gas phase including plug flow and well-mixed and a Central Jet RTD based on RTD studies. If plug flow is assumed, the degree of holdup at low effective Peclet (Pe(eff)) numbers gives an apparent under-estimate of ka' compared with empirical correlations. Values of ka' calculated using the Central Jet RTD agree well with values of ka' from literature correlations. There was a linear relationship between ka' and effective Peclet number: ka' = 2.32 x 10(-3) Pe(eff). (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objectives: To compare the population modelling programs NONMEM and P-PHARM during investigation of the pharmacokinetics of tacrolimus in paediatric liver-transplant recipients. Methods: Population pharmacokinetic analysis was performed using NONMEM and P-PHARM on retrospective data from 35 paediatric liver-transplant patients receiving tacrolimus therapy. The same data were presented to both programs. Maximum likelihood estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F). Covariates screened for influence on these parameters were weight, age, gender, post-operative day, days of tacrolimus therapy, transplant type, biliary reconstructive procedure, liver function tests, creatinine clearance, haematocrit, corticosteroid dose, and potential interacting drugs. Results: A satisfactory model was developed in both programs with a single categorical covariate - transplant type - providing stable parameter estimates and small, normally distributed (weighted) residuals. In NONMEM, the continuous covariates - age and liver function tests - improved modelling further. Mean parameter estimates were CL/F (whole liver) = 16.3 1/h, CL/F (cut-down liver) = 8.5 1/h and V/F = 565 1 in NONMEM, and CL/F = 8.3 1/h and V/F = 155 1 in P-PHARM. Individual Bayesian parameter estimates were CL/F (whole liver) = 17.9 +/- 8.8 1/h, CL/F (cutdown liver) = 11.6 +/- 18.8 1/h and V/F = 712 792 1 in NONMEM, and CL/F (whole liver) = 12.8 +/- 3.5 1/h, CL/F (cut-down liver) = 8.2 +/- 3.4 1/h and V/F = 221 1641 in P-PHARM. Marked interindividual kinetic variability (38-108%) and residual random error (approximately 3 ng/ml) were observed. P-PHARM was more user friendly and readily provided informative graphical presentation of results. NONMEM allowed a wider choice of errors for statistical modelling and coped better with complex covariate data sets. Conclusion: Results from parametric modelling programs can vary due to different algorithms employed to estimate parameters, alternative methods of covariate analysis and variations and limitations in the software itself.
Resumo:
This study compared an enzyme-linked immunosorbent assay (ELISA) to a liquid chromatography-tandem mass spectrometry (LC/MS/MS) technique for measurement of tacrolimus concentrations in adult kidney and liver transplant recipients, and investigated how assay choice influenced pharmacokinetic parameter estimates and drug dosage decisions. Tacrolimus concentrations measured by both ELISA and LC/MS/MS from 29 kidney (n = 98 samples) and 27 liver (n = 97 samples) transplant recipients were used to evaluate the performance of these methods in the clinical setting. Tacrolimus concentrations measured by the two techniques were compared via regression analysis. Population pharmacokinetic models were developed independently using ELISA and LC/MS/MS data from 76 kidney recipients. Derived kinetic parameters were used to formulate typical dosing regimens for concentration targeting. Dosage recommendations for the two assays were compared. The relation between LC/MS/MS and ELISA measurements was best described by the regression equation ELISA = 1.02 . (LC/MS/MS) + 0.14 in kidney recipients, and ELISA = 1.12 . (LC/MS/MS) - 0.87 in liver recipients. ELISA displayed less accuracy than LC/MS/MS at lower tacrolimus concentrations. Population pharmacokinetic models based on ELISA and LC/MS/MS data were similar with residual random errors of 4.1 ng/mL and 3.7 ng/mL, respectively. Assay choice gave rise to dosage prediction differences ranging from 0% to 30%. ELISA measurements of tacrolimus are not automatically interchangeable with LC/MS/MS values. Assay differences were greatest in adult liver recipients, probably reflecting periods of liver dysfunction and impaired biliary secretion of metabolites. While the majority of data collected in this study suggested assay differences in adult kidney recipients were minimal, findings of ELISA dosage underpredictions of up to 25% in the long term must be investigated further.
Resumo:
The thin-layer drying behaviour of bananas in a beat pump dehumidifier dryer was examined. Four pre-treatments (blanching, chilling, freezing and combined blanching and freezing) were applied to the bananas, which were dried at 50 degreesC with an air velocity of 3.1 m s(-1) and with the relative humidity of the inlet air of 10-35%. Three drying models, the simple model, the two-term exponential model and the Page model were examined. All models were evaluated using three statistical measures, correlation coefficient, root means square error, and mean absolute percent error. Moisture diffusivity was calculated based on the diffusion equation for an infinite cylindrical shape using the slope method. The rate of drying was higher for the pre-treatments involving freezing. The sample which was blanched only did not show any improvement in drying rate. In fact, a longer drying time resulted due to water absorption during blanching. There was no change in the rate for the chilled sample compared with the control. While all models closely fitted the drying data, the simple model showed greatest deviation from the experimental results. The two-term exponential model was found to be the best model for describing the drying curves of bananas because its parameters represent better the physical characteristics of the drying process. Moisture diffusivities of bananas were in the range 4.3-13.2 x 10(-10) m(2)s(-1). (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Evaluation of the performance of the APACHE III (Acute Physiology and Chronic Health Evaluation) ICU (intensive care unit) and hospital mortality models at the Princess Alexandra Hospital, Brisbane is reported. Prospective collection of demographic, diagnostic, physiological, laboratory, admission and discharge data of 5681 consecutive eligible admissions (1 January 1995 to 1 January 2000) was conducted at the Princess Alexandra Hospital, a metropolitan Australian tertiary referral medical/surgical adult ICU. ROC (receiver operating characteristic) curve areas for the APACHE III ICU mortality and hospital mortality models demonstrated excellent discrimination. Observed ICU mortality (9.1%) was significantly overestimated by the APACHE III model adjusted for hospital characteristics (10.1%), but did not significantly differ from the prediction of the generic APACHE III model (8.6%). In contrast, observed hospital mortality (14.8%) agreed well with the prediction of the APACHE III model adjusted for hospital characteristics (14.6%), but was significantly underestimated by the unadjusted APACHE III model (13.2%). Calibration curves and goodness-of-fit analysis using Hosmer-Lemeshow statistics, demonstrated that calibration was good with the unadjusted APACHE III ICU mortality model, and the APACHE III hospital mortality model adjusted for hospital characteristics. Post hoc analysis revealed a declining annual SMR (standardized mortality rate) during the study period. This trend was present in each of the non-surgical, emergency and elective surgical diagnostic groups, and the change was temporally related to increased specialist staffing levels. This study demonstrates that the APACHE III model performs well on independent assessment in an Australian hospital. Changes observed in annual SMR using such a validated model support an hypothesis of improved survival outcomes 1995-1999.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
We studied the variation in toxin profiles of purified extracts of 10 individual specimens and two pools of ciguateric Caranx latus. High-performance liquid chromatography/mass spectrometry (HPLC/MS) identified in all individual samples at least seven Caribbean ciguatoxins (C-CTXs) comprising C-CTX-1 and its epimer C-CTX-2 ([M + H](+) m/z 1141.58), and five new C-CTX congeners with pseudo-molecular ions at m/z 1141.58, 1143.60, 1157.57, 1159.58, and 1127.57. In some samples, additional C-CTX isomers were detected with [M + H](+) ions at m/z 1141.58 (two), 1143.60 (one) and 1157.57 (two). The two low-toxic pools contained only four to six ciguatoxins. The comparison in relative proportions of four different mass classes ([M + H](+) at m/z 1141, 1143, 1157 and 1127) showed that the group at m/z 1157 increased (2-20%) with flesh toxicity. More than 80% of group m/z 1141 comprised C-CTX-1, C-CTX-2 and their isomer C-CTX-1 a whose level in this group correlated with fish toxicity. Contrary to low-toxic fishes, high-risk specimens had C-CTX-1 levels
Resumo:
This trial compared the cost of an integrated home-based care model with traditional inpatient care for acute chronic obstructive pulmonary disease (COPD). 25 patients with acute COPD were randomised to either home or hospital management following request for hospital admission. The acute care at home group costs per separation ($745, CI95% $595-$895, n = 13) were significantly lower (p < 0.01) than the hospital group ($2543, CI95% $1766-$3321, n = 12). There was an improvement in lung function in the hospital-managed group at the Outpatient Department review, decreased anxiety in the Emergency Department in the home-managed group and equal patient satisfaction with care delivery. Acute care at home schemes can substitute for usual hospital care for some patients without adverse effects, and potentially release resources. A funding model that allows adequate resource delivery to the community will be needed if there is a move to devolve acute care to community providers.