930 resultados para CELLULOSE HYDROLYSIS
Resumo:
The Amazonian manatee (Trichechus inunguis) is endemic in the Amazonian basin and is the only exclusively fresh water sirenian. Historically hunted on a large scale, this species is now considered endangered, and Studies on the reproductive physiology are critical for the improvement of reproductive management of captive and wild Populations of manatees. The aim of this Study was to verify the viability of androgen measurement in saliva, lacrimal, urine, and fecal samples of the Amazonian manatee by conducting a hormone challenge. Two adult male manatees (A-1 and A-2) were Submitted to an experimentation protocol of 12 day (D1 to D10). On D0, the animals received an intramuscular injection of gonadotropin-releasing hormone (GnRH)-analogue. Salivary, lacrimal, urinary, and fecal samples were collected daily (between 0800 hours and 0900 hours) and frozen at -20 degrees C until assayed. Fecal samples were lyophilized, extracted with 80% methanol, and diluted in buffer before the radioimmunoassay (RIA). Urine samples underwent acid hydrolysis and were diluted in depleted bovine serum. Salivary and lacrimal samples were assayed without the extraction step. Hormonal assays were conducted with a commercial testosterone RIA kit. An androgen peak (>median + 2 interquartile range [IQR]) was observed in all matrices of both animals, although it was less prominent in the lacrimal samples of A-2. However, the fecal androgen peak (A-1 peak = 293.78 ng/g dry feces, median [IQR] = 143.58 [32.38] ng/g dry feces; A-2 peak = 686.72 ng/g dry feces, median [IQR] = 243.82 [193.16] ng/g dry feces) occurred later than urinary (A-1 peak = 648.16 ng/mg creatinine [Cr], median [IQR] = 23.88 [30.44] ng/mg Cr; A-2 peak = 370.44 ng/mg Cr, median [IQR] = 113.87 [117.73] ng/mg Cr) and salivary (A-1 peak = 678.89 pg/ml, median [IQR] = 103.69 [119.86] pg/ml; A-2 peak = 733.71 pg/ml, median [IQR] = 262.92 [211.44] pg/ml) androgen peaks. These intervals appear to be correlated with the long digesta passage time in this species. The salivary and urinary peaks were closely associated. These results demonstrate that androgen concentrations in saliva, urine, or feces samples reflect reliably physiologic events and are a powerful tool for noninvasive reproductive monitoring of Amazonian manatees.
Resumo:
Objective: This study evaluated the ability of benzalkonium chloride (BAC) to bind to dentine and to inhibit soluble recombinant MMPs and bound dentine matrix metalloproteinases (MMPs). Methods: Dentine powder was prepared from extracted human molars. Half was left mineralized; the other half was completely demineralized. The binding of BAG to dentine powder was followed by measuring changes in the supernatant concentration using UV spectrometry. The inhibitory effects of BAC on rhMMP-2, -8 and -9 were followed using a commercially available in vitro proteolytic assay. Matrix-bound endogenous MMP-activity was evaluated in completely demineralized beams. Each beam was either dipped into BAG and then dropped into 1 mL of a complete medium (CM) or they were placed in 1 mL of CM containing BAG for 30 days. After 30 days, changes in the dry mass of the beams or in the hydroxyproline (HYP) content of hydrolysates of the media were quantitated as indirect measures of matrix collagen hydrolysis by MMPs. Results: Demineralized dentine powder took up 10-times more BAG than did mineralized powder. Water rinsing removed about 50% of the bound BAC, whilst rinsing with 0.5 M NaCl removed more than 90% of the bound BAG. BAG concentrations 0.5 wt% produced 100% inhibition of soluble recombinant MMP-2, -8 or -9, and inhibited matrix-bound MMPs between 55 and 66% when measured as mass loss or 76-81% when measured as solubilization of collagen peptide fragments. Conclusions: BAC is effective at inhibiting both soluble recombinant MMPs and matrix-bound dentine MMPs in the absence of resins. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Isolated limb infusion (ILI) is an attractive, less complex alternative to Isolated limb perfusion (ILP). It has a lower morbidity in treating localized recurrences and in transit metastases of the limb for tumours such as melanoma, Merkel cell tumour and Kaposi's sarcoma, allowing administration of high concentrations of cytotoxic agent to the affected limb under hypoxic conditions. Melphalan is the preferred cytotoxic agent for the treatment of melanoma by ILP or ILI. We report pharmacokinetic data from 12 patients treated by ILI for tumours of the limb in Brisbane. The kinetics of drug distribution in the limb was calculated using a two-compartment vascular model, where both tissue and infusate act as well-stirred compartments. Analysis of melphalan concentrations in the perfusate during ILI showed good agreement between the values measured and the concentrations predicted by the model. Recirculation and wash-out flow rates, tissue concentrations and the permeability surface area product (PS) were calculated. Correlations between the PS value and the drug concentrations In the perfusate and tissue were supported by the results. These data contribute to a better understanding of the distribution of melphalan during ILI in the limb, and offer the opportunity to optimize the drug regimen for patients undergoing ILI. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
The formation of radicals in poly(vinyl alcohol), PVA, powder irradiated at 77 K by gamma -rays and the transformations of these radicals during photolysis with visible wavelengths and on thermal annealing have been studied. After irradiation a four-line ESR spectrum was observed. It was assigned to a triplet of the C-alpha-radical (38%), with a splitting of 3.27 mT, superimposed on a doublet (62%) with a splitting of 2.7 mT. The doublet appears to be composed of two radicals, one of which is photo-bleachable (58%) and the other which is not photo-bleachable (42%). This suggests that the latter radical is a neutral radical. The photo-bleachable component of the doublet has been assigned to a carbonyl anion radical. but the second doublet due to a neutral radical is unassigned. The total G-value for formation of radicals at 77 K was found to be 2.41 +/- 0.03. Upon illumination with visible light, the anion radicals were removed and the doublet components or the spectrum diminished in intensity, while the three-line spectrum of the C-alpha-radical became more clearly visible. This transition was due to the photo-detachment of electrons from traps which were proposed to be located on carbonyl groups in the polymer resulting from incomplete hydrolysis of the vinyl acetate. The photo-decay of the anion radicals could be satisfactorily described by a two-stage process. The first stage comprised the decay of approximately 80% of the anion radicals present, while the second stage was associated with the decay of the remaining 20%. Subsequent thermal annealing of a photolysed sample to 290 K led to a change in the shape of the spectrum to form a more clearly defined triplet, As the doublet of the neutral radical decays on thermal annealing between 150 and 250K, the C-alpha-radical is formed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The reasons for the intra- and interindividual variability in the clearance of valproic acid (VPA) have not been completely characterized. The aim of this study was to examine day-night changes in the clearance of 3-oxo-valproate (3-oxo-VPA), 4-hydroxy-valproate (4-OH-VPA), and valproic acid glucuronides under steady state. Six diurnally active healthy male volunteers ingested 200 mg sodium valproate 12 hourly, at 0800 and 2000, for 28 days. On the last study day, two sequential 12-h urine samples were collected commencing at 2000 the evening before. Plasma samples were obtained at the end of each collection. Following alkaline hydrolysis, urine was analyzed for concentrations of VPA, 3-oxo-VPA, and 4-OH-VPA. A separate aliquot was assayed for creatinine (CR). The plasma concentrations of VPA, 3-oxo-VPA, 2-en-VPA, and CR were determined. The analysis of VPA and its metabolites was performed by CC-MS. There was an increase in plasma 3-oxo-VPA concentration at 0800, sampling as compared to 2000 sampling (p < .05). The urinary excretion of 3-oxo-VPA and VPA glucuronides were decreased between 2000 and 0800, compared to between 0800, and 2000, by 30% and 50% respectively (p < .05). These results indicate a nocturnal decrease in renal clearance of 3-oxo-VPA rather than a decrease in the beta -oxidation of VPA at night. These differences were not explained by differences between the sampling periods in CR excretion. These results indicate the importance of collecting samples of 24-h duration when studying metabolic profiles of VPA.
Resumo:
Many non-steroidal anti-inflammatory drugs (NSAIDs) which form acyl glucuronide conjugates as major metabolites have shown an antiproliferative effect on colorectal tumors. This study assesses the extent to which rearrangement of an acyl glucuronide metabolite of a model NSAID into beta -glucuronidase-resistant isomers facilitates its passage through the small intestine to reach the colon. Rats were dosed orally with diflunisal (DF), its acyl glucuronide (DAG) and a mixture of rearrangement isomers (iso-DAG) at 10 mg DF equivalents/kg. The parent drug DF appeared in plasma after all doses, with maximum concentrations of 20.5 +/- 2.5, 28.8 +/- 8.3 and 11.0 +/- 1.6 mug DF/ml respectively, obtained at 3.8 +/- 0.3, 3.6 +/- 1.8 and 7.5 +/- 0.9 hr after the DF, DAG and iso-DAG doses respectively. At 48 hr, 16.2 +/- 3.3, 19.8 +/- 0.8 and 42.9 +/- 10.1% of the doses respectively were recovered in feces, with less than or equal to 1% remaining in the intestine. About half of each dose was recovered as DF and metabolites in 48 hr urine: for DF and DAG doses, the majority was in the first 24 hr urine. whereas for iso-DAG doses, recoveries in the first and second 24 hr periods were similar. The results show that hydrolysis of both DAG and iso-DAG, and absorption of liberated DF, occur during passage through the gut, but that these processes occur more slowly and to a lesser degree for iso-DAG. The intrinsic hydrolytic capacities of various intestinal segments (including contents) towards DAG and iso-DAG were obtained by incubating homogenates under saturating concentrations of DAG/iso-DAG at 37 degreesC. Upper small intestine, lower small intestine, caecum and colon released 2400, 3200, 9200 and 22800 mug DF/hr/g tissue plus contents respectively from DAG substrate, and 18, 10, 140 and 120 mug DF/hr/g tissue plus contents respectively from iso-DAG substrate. The much greater resistance of iso-DAG to hydrolysis appears attributable to its resistance to beta -glucuronidases. The data suggest that in rats dosed with DF, DAG excreted in bile would be substantially hydrolysed in the small intestine and liberated DF reabsorbed, but that portion which rearranges to iso-DAG would likely reach the colon. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Many nonsteroidal anti-inflammatory drugs (NSAIDs) which have antiproliferative activity in colon cancer cells are carboxylate compounds forming acyl glucuronide metabolites. Acyl glucuronides are potentially reactive, able to hydrolyse, rearrange into isomers, and covalently modify proteins under physiological conditions. This study investigated whether the acyl glucuronides (and isomers) of the carboxylate NSAIDs diflunisal, zomepirac and diclofenac had antiproliferative activity on human adenocarcinoma. HT-29 cells in culture. Included as controls were the carboxylate NSAIDs themselves, the non-carboxylate NSAID piroxicam, and the carboxylate non-NSAID valproate, as well as its acyl glucuronide and isomers. The compounds were incubated at 1-3000 muM with HT-29 cells for 24 hr, with [H-3]-thymidine added for an additional 2 hr incubation. IC50 values were calculated from the concentration-inhibition response curves for thymidine uptake. The four NSAIDs inhibited thymidine uptake, with IC50 values about 200-500 muM. All of the NSAID acyl glucuronides (and isomers, tested in the case of diflunisal) showed antiproliferative activity broadly comparable to the parent drugs. This activity may stem from direct uptake of intact glucuronide/isomers followed by covalent modification of proteins critical in the cell replication process. However, hydrolysis during incubation and cellular uptake of liberated parent NSAID will play a role. In HT-29 cells incubated with zomepirac, covalently modified proteins in cytosol were detected by immunoblotting with a zomepirac antibody, suggesting that HT-29 cells do have the capacity to glucuronidate zomepirac. The anti-epileptic drug valproate had no effect on inhibition of thymidine uptake, though, surprisingly, its acyl glucuronide and isomers were active. The reasons for this are unclear at present. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
Large chemical libraries can be synthesized on solid-support beads by the combinatorial split-and-mix method. A major challenge associated with this type of library synthesis is distinguishing between the beads and their attached compounds. A new method of encoding these solid-support beads, 'colloidal bar-coding', involves attaching fluorescent silica colloids ('reporters') to the beads as they pass through the compound synthesis, thereby creating a fluorescent bar code on each bead. In order to obtain sufficient reporter varieties to bar code extremely large libraries, many of the reporters must contain multiple fluorescent dyes. We describe here the synthesis and spectroscopic analysis of various mono- and multi-fluorescent silica particles for this purpose. It was found that by increasing the amount of a single dye introduced into the particle reaction mixture, mono- fluorescent silica particles of increasing intensities could be prepared. This increase was highly reproducible and was observed for six different fluorescent dyes. Multi-fluorescent silica particles containing up to six fluorescent dyes were also prepared. The resultant emission intensity of each dye in the multi-fluorescent particles was found to be dependent upon a number of factors; the hydrolysis rate of each silane-dye conjugate, the magnitude of the inherent emission intensity of each dye within the silica matrix, and energy transfer effects between dyes. We show that by varying the relative concentration of each silane-dye conjugate in the synthesis of multi-fluorescent particles, it is possible to change and optimize the resultant emission intensity of each dye to enable viewing in a fluorescence detection instrument.
Resumo:
Sunscreens penetrate human epidermis and modify the biology of proliferating cells. This study addressed the question whether the UV response of cultured human cells is affected by direct treatment with nontoxic levels of sunscreens. Cell survival following exposure to UVC or unfiltered UVB was not altered by preincubation with 25 μg/mL of octyl p-dimethylaminobenzoate (o-PABA), 2-ethylhexyl p-methoxycinnamate (EHMC) or oxybenzone. However, UVA or UVB filtered to reproduce the solar UV spectrum penetrating to the basal layer of the epidermis, highly sensitized cells to killing by o-PABA but not by its hydrolysis product, 4-dimethylaminobenzoic acid. Sensitization was found in all cell types tested, except normal keratinocytes, and could be prevented by certain antioxidants particularly pyruvate and the hydroxyl radical scavenger mannitol. o-PABA and EHMC applied without UV reduced the adherence of cells. The results indicate that sunscreens may increase cell mobility and the combination of o-PABA with solar UV may selectively damage melanocytes in the skin.
Resumo:
An attempt was made to quantify the boundaries and validate the granule growth regime map for liquid-bound granules recently proposed by Iveson and Litster (AlChE J. 44 (1998) 1510). This regime map postulates that the type of granule growth behaviour is a function of only two dimensionless groups: the amount of granule deformation during collision (characterised by a Stokes deformation number, St(def)) and the maximum granule pore saturation, s(max). The results of experiments performed with a range of materials (glass ballotini, iron ore fines, copper chalcopyrite powder and a sodium sulphate and cellulose mixture) using both drum and high shear mixer granulators were examined. The drum granulation results gave good agreement with the proposed regime map. The boundary between crumb and steady growth occurs at St(def) of order 0.1 and the boundary between steady and induction growth occurs at St(def) of order 0.001. The nucleation only boundary occurs at pore saturations that increase from 70% to 80% with decreasing St(def). However, the high shear mixer results all had St(def) numbers which were too large. This is most likely to be because the chopper tip-speed is an over-estimate of the average impact velocity granules experience and possibly also due to the dynamic yield strength of the materials being significantly greater than the yield strengths measured at low strain rates. Hence, the map is only a useful tool for comparing the granulation behaviour of different materials in the same device. Until we have a better understanding of the flow patterns and impact velocities in granulators, it cannot be used to compare different types of equipment. Theoretical considerations also revealed that several of the regime boundaries are also functions of additional parameters not explicitly contained on the map, such as binder viscosity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dry or wet soil surface under banana plants. The transformations of urea were followed in cylindrical microplots (10.3 cm diameter x 23 cm long), a nitrogen (N) balance was conducted in macroplots (3.85 m x 2.0 m) with N-15 labelled urea, and ammonia volatilization was determined with a mass balance micrometeorological method. Most of the urea was hydrolysed within 4 days irrespective of whether the urea was applied onto dry or wet soil. The nitrification rate was slow at the beginning when the soil was dry, but increased greatly after small amounts of rain; in the 9 days after rain 20% of the N applied was converted to nitrate. In the 40 days between urea application and harvesting, the macroplots the banana plants absorbed only 15% of the applied N; at harvest the largest amounts were found in the leaves (3.4%), pseudostem (3.3%) and fruit (2.8%). Only 1% of the applied N was present in the roots. Sixty percent of the applied N was recovered in the soil and 25% was lost from the plant-soil system by either ammonia volatilization, leaching or denitrification. Direct measurements of ammonia volatilization showed that when urea was applied to dry soil, and only small amounts of rain were received, little ammonia was lost (3.2% of applied N). In contrast, when urea was applied onto wet soil, urea hydrolysis occurred immediately, ammonia was volatilized on day zero, and 17.2% of the applied N was lost by the ninth day after that application. In the latter study, although rain fell every day, the extensive canopy of banana plants reduced the rainfall reaching the fertilized area under the bananas to less than half. Thus even though 90 mm of rain fell during the volatilization study, the fertilized area did not receive sufficient water to wash the urea into the soil and prevent ammonia loss. Losses by leaching and denitrification combined amounted to 5% of the applied N.
Resumo:
A system has been developed for studying the biodegradation of natural and synthetic polymeric material. The system is based on standard methods developed by the European Committee for Standardisation (CEN TC 261) (ISO/DIS 14855) and the American Society of Testing Materials, 'ASTM. Standard Test Method for Determining Aerobic. Biodegradation of Plastic Materials under Controlled Composting Conditions' (ASTM D 5338-92). A new low-cost compost facility has been used which satisfies the requirements of these standards. The system has been automated for data collection and has been run under the conditions specified by the standards. In the system, cellulose, newspaper and two starch-based polymers were treated with compost in a series of 3dm(3) vessels at 52 degreesC and under conditions of optimum moisture and pH. The degradation was followed over time by measuring the amount of carbon released as carbon dioxide. (C) 2001 Society of Chemical Industry.
Resumo:
The effects of conditioning and hot water treatments on immature and mature 'Kensington' mangoes were examined. A hot water treatment of 47 degreesC fruit core temperature held for 15 min increased weight loss (50%), fruit softness (15%), disrupted starch hydrolysis and interacted with maturity to reduce the skin yellowness (40-51%) of early harvested fruit. Immature fruit were more susceptible to hot water treatment-induced skin scalding, starch layer and starch spot injuries and disease. Conditioning fruit at 40 degreesC for up to 16 h before hot water treatment accelerated fruit ripening, as reflected in higher total soluble solids and lower titratable acidity levels. As fruit maturity increased, the tolerance to hot water treatment-induced skin scalding and the retention of starch layers and starch spots increased and susceptibility to lenticel spotting decreased. A conditioning treatment of either 22 degrees or 40 degreesC before hot water treatment could prevent the appearance of cavities at all maturity levels. The 40 degreesC conditioning temperature was found to be more effective in increasing fruit heat tolerance than the 22 degreesC treatment; the longer the time of conditioning at 40 degreesC, the more effective the treatment (16 v. 4 h). For maximum fruit quality, particularly for export markets, it is recommended that mature fruit are selected and conditioned before hot water treatment to reduce the risk of heat damage.
Resumo:
Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy Studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid organelles from which lysosomes are reformed. The discovery of the hybrid organelle has opened up three areas of investigation: (i) the mechanism of direct fusion of late endosomes and lysosomes, (ii) the mechanism of re-formation of lysosomes from the hybrid organelle, and (iii) the function of the hybrid organelle. Fusion has analogies with homotypic vacuole fusion in yeast. It requires syntaxin 7 as part of the functional trans-SNARE [SNAP receptor, where SNAP is soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein] complex and the release of lumenal calcium to achieve membrane fusion. Reformation of lysosomes from the hybrid organelle occurs by a maturation process involving condensation of lumenal content and probably removal of some membrane proteins by vesicular traffic. Lysosomes may thus be regarded as a type of secretory granule, storing acid hydrolases in between fusion events with late endosomes. The hybrid organelle is predicted to function as a 'cell stomach', acting as a major site of hydrolysis of endocytosed macromolecules.