980 resultados para CELL-CULTURES
Resumo:
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MWr of about 120 kDa and specific PNPP activity of 1200 U/tng. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/ mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 Wing), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and (3glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Paracoccidioidomycosis is a deep endemic mycosis associated with an antigen-specific immunodeficiency. To examine the role of apoptosis in this immunodeficiency, peripheral blood mononuclear cells (PBMC) of patients with paracoccidioidomycosis and controls were stimulated with the main antigen of Paracoccidioides brasiliensis (gp43) and an unrelated fungal antigen (from Candida albicans, CMA) and analyzed for annexin V and propidium iodide staining by flow cytometry. Control PBMC proliferated well with both antigens. Patients' PBMC proliferated only with CMA, but presented higher levels of apoptosis with gp43 and CMA than in their own unstimulated cultures. Moreover, gp43-triggered apoptosis in control PBMC was lower than in those of the patients. Thus, patient but not control gp43-stimulated T cells apparently remained anergized and subsequently underwent apoptosis. While CMA-induced apoptosis is likely triggered by activation-induced cell death, this is apparently not the case in gp43-induced apoptosis because of the lack of cell cycling and IL-2 in the gp43-stimulated cultures. However, higher IL-10 levels were found in gp43-stimulated patient PBMC cultures. Addition of a neutralizing anti-IL-10 antibody to the cultures resulted in increased apoptosis levels only in gp43-stimulated patient PBMC cultures. Our results suggest that apoptosis plays a role in the patients' antigen-specific hyporesponsiveness and that IL-10 may have an antiapoptotic role. (C) 2002 Elsevier B.V. (USA).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of essential oils (EOs) in functional foods containing probiotic microorganisms must consider the antimicrobial activity of these oils against beneficial bacteria such as Lactobacillus rhamnosus. This study aimed to evaluate the sensitivity of L. rhamnosus cultures treated with cinnamon EO through viable cell counts and visualisation by transmission electron microscopy. Cinnamon EO at a concentration of 0.04% had a bacteriostatic activity after 2 h of incubation. Although slight alterations were detected in the cell structure, this concentration was considered to be bactericidal, since it led to a significant reduction in cell numbers after 24 h. on the other hand, cinnamon EO at a 1.00% concentration decreased cell counts by 3 log units after 2 h incubation and no viable cell count was detected after 24 h. Transmission electron microscopy indicated that cells treated with 1.00% cinnamon EO were severely damaged and presented cell membrane disruption and cytoplasmic leakage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the sigma(s) subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44-50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iciR, and fadR) achieved only medium cell densities (15-21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth, on a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the sigma(s) regulon to grow to high cell densities, at least not under the conditions tested.
Resumo:
Heme is present in all cells, acting as a cofactor in essential metabolic pathways such as respiration and photosynthesis. Moreover, both heme and its degradation products, CO, iron and biliverdin, have been ascribed important signaling roles. However, limited knowledge is available on the intracellular pathways involved in the flux of heme between different cell compartments. The cattle tick Boophilus microplus ingests 100 times its own mass in blood. The digest cells of the midgut endocytose blood components and huge amounts of heme are released during hemoglobin digestion. Most of this heme is detoxified by accumulation into a specialized organelle, the hemosome.We followed the fate of hemoglobin and albumin in primary cultures of digest cells by incubation with hemoglobin and albumin labeled with rhodamine. Uptake of hemoglobin by digest cells was inhibited by unlabeled globin, suggesting the presence of receptor-mediated endocytosis. After endocytosis, hemoglobin was observed inside large digestive vesicles. Albumin was exclusively associated with a population of small acidic vesicles, and an excess of unlabeled albumin did not inhibit its uptake. The intracellular pathway of the heme moiety of hemoglobin was specifically monitored using Palladium-mesoporphyrin IX (Pd-mP) as a fluorescent heme analog. When pulse and chase experiments were performed using digest cells incubated with Pd-mP bound to globin (Pd-mP-globin), strong yellow fluorescence was found in large digestive vesicles 4 h after the pulse. By 8 h, the emission of Pd-mP was red-shifted and more evident in the cytoplasm, and at 12 h most of the fluorescence was concentrated inside the hemosomes and had turned green. After 48 h, the Pd-mP signal was exclusively found in hemosomes. In methanol, Pd-mP showed maximal emission at 550 nm, exhibiting a red-shift to 665 nm when bound to proteins in vitro.The red emission in the cytosol and at the boundary of hemosomes suggests the presence of heme-binding proteins, probably involved in transport of heme to the hemosome. The existence of an intracellular heme shuttle from the digestive vesicle to the hemosome acting as a detoxification mechanism should be regarded as a major adaptation of ticks to a blood-feeding way of life. To our knowledge, this is the first direct observation of intracellular transport of heme in a living eukaryotic cell. A similar approach, using Pd-mP fluorescence, could be applied to study heme intracellular metabolism in other cell types.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chromosome analysis of short-term cultures from a basal cell carcinoma was performed. The analyzed karyotypes showed a pseudodiploid clone characterized by a der(4)t(4;14)(p14;p11) and a concomitant inversion of the same chromosome 4 involved in the t(4;14) with the breakpoints at p14 and q25.
Resumo:
The in vitro effect of Paracoccidioides brasiliensis exoantigen on the human lymphocytes cell cycle and chromosomes was studied. Human peripheral blood lymphocyte cultures from ten healthy, white, non-smoking, non-related adult males (mean age 31·3 ± 8·2 years) were studied. Blood cultures were treated with three exoantigen concentrations (0·25, 2·50 and 10·00 μg ml -1). At least 1000 metaphases were analysed at each concentration, for evaluation of numerical and structural chromosome aberrations (cA) and 30 000 for mitotic index (MI). Among the treated cultures, statistically significant differences in the frequencies of MI and cA were not observed. Nevertheless, when compared with control cultures, they all showed a significantly lower frequency of MI and higher frequency of cA. It is suggested that the detected alterations were caused by the exoantigen, its fractions or its metabolites. © 1996 Informa UK Ltd All rights reserved.