975 resultados para CELL MORPHOLOGY
Resumo:
We present a novel protein crystallization strategy, applied to the crystallization of human T cell leukemia virus type 1 (HTLV-1) transmembrane protein gp21 lacking the fusion peptide and the transmembrane domain, as a chimera with the Escherichia coli maltose binding protein (MBP). Crystals could not be obtained with a MBP/gp21 fusion protein in which fusion partners were separated by a flexible linker, but were obtained after connecting the MBP C-terminal alpha-helix to the predicted N-terminal alpha-helical sequence of gp21 via three alanine residues. The gp21 sequences conferred a trimeric structure to the soluble fusion proteins as assessed by sedimentation equilibrium and X-ray diffraction, consistent with the trimeric structures of other retroviral transmembrane proteins. The envelope protein precursor, gp62, is likewise trimeric when expressed in mammalian cells. Our results suggest that MBP may have a general application for the crystallization of proteins containing N-terminal alpha-helical sequences.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 degrees C, 26 degrees C, 28 degrees C and 31 degrees C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 degrees C and 28 degrees C had wider heads than hatchlings incubated at 24 degrees C and 31 degrees C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 degrees C than at 26 degrees C, 28 degrees C and 31 degrees C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass.
Resumo:
Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.
Resumo:
Immunolabeling is commonly used to localize antigens within frozen or paraffin tissue sections. We modified existing immunolabeling techniques to allow the detection of three antigens simultaneously within the one tissue section. The approach relies on the use of three monoclonal antibodies in sequential immunoperoxidase staining steps, each with colored substrates, resulting in the deposition of black, brown, and rose stains. The method is rapid and does not require novel techniques or materials. In this report, we demonstrate the colocalization of mast cell tryptase, neurofilament protein, and CD31 (platelet-endothelial cell adhesion molecule) or laminin in normal human skin and normal buccal mucosa, as an illustration of the power and simplicity of the multiple antigen localization technique.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
The salamanderfish, Lepidogalaxias salamandroides (Galaxiidae, Teleostei) is endemic to southwestern Australia and inhabits shallow, freshwater pools which evaporate during the hot summer months. Burrowing into the substrate in response to falling water levels allows these fish to aestivate for extended periods of time while encapsulated in a mucous cocoon even when the pools contain no water. Only a few minutes after a major rainfall, these fish emerge into relatively clear water which subsequently becomes laden with tannin, turning the water black and reducing the pH to approximately 4.3. As part of a large study of the visual adaptations of this unique species, the retinal and lenticular morphology of the aestivating salamanderfish is examined at the level of the light and electron microscopes. The inner retina is highly vascularised by a complex system of vitreal blood vessels, while the outer retina receives a blood supply by diffusion from a choriocapillaris. This increased retinal blood supply may be an adaptation for reducing the oxygen tension during critical periods of aestivation. Large numbers of Muller cells traverse the thickness of the retina from the inner to the outer limiting membranes. The ganglion cells are arranged in two ill-defined layers, separated from a thick inner nuclear layer containing two layers of horizontal cells by a soma-free inner plexiform layer. The photoreceptors can be divided into three types typical of many early actinopterygian representatives; equal double cones, small single cones and large rods (2:1:1). These photoreceptors are arranged into a unique regular square mosaic comprising a large rod bordered by four equal double cones with a small single cone located at the corner of each repeating unit. The double cones may optimise perception of mobile prey which it tracks by flexion of its head and neck and the large rods may increase sensitivity in the dark tannin-rich waters in which it lives. Each single cone also possesses a dense collection of polysomes and glycogen (a paraboloid) beneath its ellipsoid, the first such finding in teleosts. The retinal pigment epithelium possesses melanosomes, pha,oocytes and a large number of mitochondria. The anatomy of the retina and the photoreceptor mosaic is discussed in relation to the primitive phylogeny of this species and its unique life history.
Resumo:
Neutrophil infiltration is a feature of alcoholic hepatitis (AH), and although the mechanism by which this occurs is unclear, it may involve a chemotactic gradient. We used lipopolysaccharide (LPS) to induce, in ethanol-fed rats, liver damage similar to that seen in AH. To our knowledge, this study is the first to examine the effect of ethanol on LPS-stimulated chemokine mRNA expression in this model. Hepatic cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1 beta, MIP-2, and eotaxin mRNA levels were elevated 1 to 3 hr post-LPS in both groups. Maximal expression of MIP-2 and MCP-1 mRNA was higher in ethanol-fed rats 1 hr post-LPS, whereas CINC-2 mRNA expression was elevated above controls at 12 to 24 hr. Hepatic intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 mRNA levels were elevated in both groups at 1 hr, whereas L-selectin expression in ethanol-fed rats was elevated above controls at 12 to 24 hr. Hepatic neutrophil infiltration was highest during maximal hepatocyte necrosis. These data suggest that cell adhesion molecules, in conjunction with elevated cytokines and the subsequently induced chemokines, may assist in the formation of a chemotactic gradient within the liver, causing the neutrophil infiltration seen both in this model and possibly in AH.
Resumo:
We report the detection of living colonies of nano-organisms (nanobes) on Triassic and Jurassic sandstones and other substrates. Nanobes have cellular structures that are strikingly similar in morphology to Actinomycetes and fungi (spores, filaments, and fruiting bodies) with the exception that they are up to 10 times smaller in diameter (20 nm to 1.0 mu m). Nanobes are noncrystalline structures that are composed of C, O, and N. Ultra thin sections of nanobes show the existence of an outer layer or membrane that may represent a cell wall. This outer layer surrounds an electron dense region interpreted to be the cytoplasm and a less electron dense central region that may represent a nuclear area. Nanobes show a positive reaction to three DNA stains, [4',6-diamidino-2 phenylindole (DAPI), Acridine Orange, and Feulgen], which strongly suggests that nanobes contain DNA. Nanobes are communicable and grow in aerobic conditions at atmospheric pressure and ambient temperatures. While morphologically distinct, nanobes are in the same size range as the controversial fossil nannobacteria described by others in various rock types and in the Martian meteorite ALH84001.
Resumo:
A finite element model (FEM) of the cell-compression experiment has been developed in dimensionless form to extract the fundamental cell-wall-material properties (i.e. the constitutive equation and its parameters) from experiment force-displacement data. The FEM simulates the compression of a thin-walled, liquid-filled sphere between two flat surfaces. The cell-wall was taken to be permeable and the FEM therefore accounts for volume loss during compression. Previous models assume an impermeable wall and hence a conserved cell volume during compression. A parametric study was conducted for structural parameters representative of yeast. It was shown that the common approach of assuming reasonable values for unmeasured parameters (e.g. cell-wall thickness, initial radial stretch) can give rise to nonunique solutions for both the form and constants in the cell-wall constitutive relationship. Similarly, measurement errors can also lead to an incorrectly defined cell-wall constitutive relationship. Unique determination of the fundamental wall properties by cell compression requires accurate and precise measurement of a minimum set of parameters (initial cell radius, initial cell-wall thickness, and the volume loss during compression). In the absence of such measurements the derived constitutive relationship may be in considerable error, and should be evaluated against its ability to predict the outcome of other mechanical experiments. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The task of segmenting cell nuclei from cytoplasm in conventional Papanicolaou (Pap) stained cervical cell images is a classical image analysis problem which may prove to be crucial to the development of successful systems which automate the analysis of Pap smears for detection of cancer of the cervix. Although simple thresholding techniques will extract the nucleus in some cases, accurate unsupervised segmentation of very large image databases is elusive. Conventional active contour models as introduced by Kass, Witkin and Terzopoulos (1988) offer a number of advantages in this application, but suffer from the well-known drawbacks of initialisation and minimisation. Here we show that a Viterbi search-based dual active contour algorithm is able to overcome many of these problems and achieve over 99% accurate segmentation on a database of 20 130 Pap stained cell images. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Background. Human aortic valve allografts elicit a cellular and humoral immune response. It is not clear whether this is important in promoting valve damage. We investigated the changes in morphology, cell populations, and major histocompatibility complex antigen distribution in the rat aortic valve allograft. Methods. Fresh heart valves from Lewis rats were transplanted into the abdominal aorta of DA rats. Valves from allografted, isografted, and presensitized recipient rats were examined serially with standard morphologic and immunohistochemical techniques. Results. In comparison with isografts, the allografts were infiltrated and thickened by increased numbers of CD4(+) and CD8(+) lymphocytes, macrophages, and fibroblasts. Thickening of the valve wall and leaflet and the density of the cellular infiltrate was particularly evident after presensitization. Endothelial cells were frequently absent in presensitized allografts whereas isografts had intact endothelium. Cellular major histocompatibility complex class I and II antigens in the allograft were substantially increased. A long-term allograft showed dense fibrosis and disruption of the media with scattered persisting donor cells. Conclusions. The changes in these aortic valve allograft experiments are consistent with an allograft immune response and confirm that the response can damage aortic valve allograft tissue. (C) 1998 by The Society of Thoracic Surgeons.