865 resultados para CARTILAGE
Resumo:
BACKGROUND Cam-type femoroacetabular impingement (FAI) resulting from an abnormal nonspherical femoral head shape leads to chondrolabral damage and is considered a cause of early osteoarthritis. A previously developed experimental ovine FAI model induces a cam-type impingement that results in localized chondrolabral damage, replicating the patterns found in the human hip. Biochemical MRI modalities such as T2 and T2* may allow for evaluation of the cartilage biochemistry long before cartilage loss occurs and, for that reason, may be a worthwhile avenue of inquiry. QUESTIONS/PURPOSES We asked: (1) Does the histological grading of degenerated cartilage correlate with T2 or T2* values in this ovine FAI model? (2) How accurately can zones of degenerated cartilage be predicted with T2 or T2* MRI in this model? METHODS A cam-type FAI was induced in eight Swiss alpine sheep by performing a closing wedge intertrochanteric varus osteotomy. After ambulation of 10 to 14 weeks, the sheep were euthanized and a 3-T MRI of the hip was performed. T2 and T2* values were measured at six locations on the acetabulum and compared with the histological damage pattern using the Mankin score. This is an established histological scoring system to quantify cartilage degeneration. Both T2 and T2* values are determined by cartilage water content and its collagen fiber network. Of those, the T2* mapping is a more modern sequence with technical advantages (eg, shorter acquisition time). Correlation of the Mankin score and the T2 and T2* values, respectively, was evaluated using the Spearman's rank correlation coefficient. We used a hierarchical cluster analysis to calculate the positive and negative predictive values of T2 and T2* to predict advanced cartilage degeneration (Mankin ≥ 3). RESULTS We found a negative correlation between the Mankin score and both the T2 (p < 0.001, r = -0.79) and T2* values (p < 0.001, r = -0.90). For the T2 MRI technique, we found a positive predictive value of 100% (95% confidence interval [CI], 79%-100%) and a negative predictive value of 84% (95% CI, 67%-95%). For the T2* technique, we found a positive predictive value of 100% (95% CI, 79%-100%) and a negative predictive value of 94% (95% CI, 79%-99%). CONCLUSIONS T2 and T2* MRI modalities can reliably detect early cartilage degeneration in the experimental ovine FAI model. CLINICAL RELEVANCE T2 and T2* MRI modalities have the potential to allow for monitoring the natural course of osteoarthrosis noninvasively and to evaluate the results of surgical treatments targeted to joint preservation.
Resumo:
Arthroscopic treatment of hallux rigidus is appropriate after failed nonoperative treatment. Debridement with cheilectomy, and fusion are the main indications for arthroscopic treatment of hallux rigidus. If the cartilage damage is extensive and the patient has consented, then a fusion is performed at the same sitting.
Resumo:
INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Resumo:
OBJECTIVES To compare the diagnostic performance of magnetic resonance imaging (MRI) in terms of sensitivity and specificity using a field strength of <1.0 T (T) versus ≥1.5 T for diagnosing or ruling out knee injuries or knee pathologies. METHODS The systematic literature research revealed more than 10,000 references, of which 1598 abstracts were reviewed and 87 full-text articles were retrieved. The further selection process resulted in the inclusion of four systematic reviews and six primary studies. RESULTS No differences could be identified in the diagnostic performance of low- versus high-field MRI for the detection or exclusion of meniscal or cruciate ligament tears. Regarding the detection or grading of cartilage defects and osteoarthritis of the knee, the existing evidence suggests that high-field MRI is tolerably specific but not very sensitive, while there is literally no evidence for low-field MRI because only a few studies with small sample sizes and equivocal findings have been performed. CONCLUSIONS We can recommend the use of low-field strength MRI systems in suspected meniscal or cruciate ligament injuries. This does, however, not apply to the diagnosis and grading of knee cartilage defects and osteoarthritis because of insufficient evidence.
Resumo:
OBJECTIVE Successful repair of defects in the avascular zone of meniscus remains a challenge in orthopedics. This proof of concept study aimed to investigate a guided tissue regeneration approach for treatment of tears in meniscus avascular zone in a goat model. DESIGN Full-depth longitudinal tear was created in the avascular zone of the meniscus and sutured. In the two treatment groups, porcine collagen membrane was wrapped around the tear without (CM) or with injection of expanded autologous chondrocytes (CM+cells), whereas in the control group the tear remained only sutured. Gait recovery was evaluated during the entire follow-up period. On explantation at 3 and 6 months, macroscopic gross inspection assessed healing of tears, degradation of collagen membrane, potential signs of inflammation, and osteoarthritic changes. Microscopic histology scoring criteria were developed to evaluate healing of tears, the cellular response, and the inflammatory response. RESULTS Gait recovery suggested protective effect of collagen membrane and was supported by macroscopical evaluation where improved tear healing was noted in both treated groups. Histology scoring in CM compared to suture group revealed an increase in tear margins contact, newly formed connective tissue between margins, and cell formations surrounded with new matrix after 3 months yet not maintained after 6 months. In contrast, in the CM+cells group these features were observed after 3 and 6 months. CONCLUSIONS A transient, short-term guided tissue regeneration of avascular meniscal tears occurred upon application of collagen membrane, whereas addition of expanded autologous chondrocytes supported more sustainable longer term tear healing.
Resumo:
In Pierre Robin sequence, a retracted tongue due to micrognathia is thought to physically obstruct palatal shelf elevation and thereby cause cleft palate. However, micrognathia is not always associated with palatal clefting. Here, by using the Bmp7-null mouse model presenting with cleft palate and severe micrognathia, we provide the first causative mechanism linking the two. In wild-type embryos, the genioglossus muscle, which mediates tongue protrusion, originates from the rostral process of Meckel's cartilage and later from the mandibular symphysis, with 2 tendons positive for Scleraxis messenger RNA. In E13.5 Bmp7-null embryos, a rostral process failed to form, and a mandibular symphysis was absent at E17.5. Consequently, the genioglossus muscle fibers were diverted toward the lingual surface of Meckel's cartilage and mandibles, where they attached in an aponeurosis that ectopically expressed Scleraxis. The deflection of genioglossus fibers from the anterior-posterior toward the medial-lateral axis alters their direction of contraction and necessarily compromises tongue protrusion. Since this muscle abnormality precedes palatal shelf elevation, it is likely to contribute to clefting. In contrast, embryos with a cranial mesenchyme-specific deletion of Bmp7 (Bmp7:Wnt1-Cre) exhibited some degree of micrognathia but no cleft palate. In these embryos, a rostral process was present, indicating that mesenchyme-derived Bmp7 is dispensable for its formation. Moreover, the genioglossus appeared normal in Bmp7:Wnt1-Cre embryos, further supporting a role of aberrant tongue muscle attachment in palatal clefting. We thus propose that in Pierre Robin sequence, palatal shelf elevation is not impaired simply by physical obstruction by the tongue but by a specific developmental defect that leads to functional changes in tongue movements.
Resumo:
Extracellular matrix (ECM) is a component of a variety of organisms that provides both structural support and influence upon the cells it surrounds. The importance of the ECM is becoming more apparent as matrix defects are linked to human disease. In this study, the large, extracellular matrix heparan sulfate proteoglycan, perlecan (Pln) is examined in two systems. First, the role of Pln in the interaction between a blastocyst and uterine epithelial cells is investigated. In mice, blastocyst attachment and implantation occurs at approximately d 4.5 post coitus. In addition, a delayed implantation model has been used to distinguish between the response of the blastocyst to that of hatching and of becoming attachment competent. ^ The second series of experiments described in this study focuses on the process of chondrogenesis in mice. Pln, commonly expressed with other basement membrane (BM) proteins, was found to be expressed in cartilaginous tissue without other BM proteins. This unusual expression pattern led to further study and the development of an in vitro chondrogenesis assay using the mouse embryonic fibroblast cell line, C3H/10T1/2. When cultured on Pln in vitro, these cells form aggregates and express the cartilage proteins, collagen type II and aggrecan. In examining the participation of the heparan sulfate (HS) chains in this process, the proteoglycan was enzymatically digested to remove the HS chains before the initiation of 10T1/2 cell culture. After digestion, the ability of Pln to stimulate aggregate formation was greatly diminished. Thus, the HS chains participate in the cell induction process. To determine which domain of Pln might be responsible for this activity, recombinant fragments of Pin were used in the cell culture assay. Of all recombinant protein fragments tested, only the domain including the HS chains, domain 1, was able to initiate the morphological change exhibited by the 10T1/2 cells. Similar to native Pln, when HS chains were removed from domain I, chondrogenic activity was abolished. A variant of domain I carrying both HS and chondroitin sulfate (CS) chains retained activity when only HS chains were removed. When both HS and CS chains were removed, then activity was lost. ^ The ability to rapidly stimulate differentiation of 10T1/2 cells in vitro may lead to better control of chondrogenesis in vitro and in vivo, providing better understanding and manipulation of the chondrogenic process. This greater understanding may have benefits for study of cartilage and bone diseases and subsequent treatment options. (Abstract shortened by UMI.)^
Resumo:
Bone morphogenesis is a complex biological process. The multistep process of chondrogenesis is the most important aspect of endochondral bone formation. To study the mechanisms which control this multistep pathway of chondrogenesis during embryonic development, I started by isolating cDNAs encoding novel transcriptional factors from chondrocytes. Several such cDNAs encoding putative homeoproteins were identified from a rat chondrosarcoma cDNA preparation. I have been concentrating on characterizing two of these cDNAs. The deduced amino acid sequence of the first homeoprotein, Cart-1, contains a prd-type homeodomain. Northern hybridization and RNase protection analysis revealed that Cart-1 RNAs were present at high levels in a well differentiated rat chondrosarcoma tumor and in a cell line derived from this tumor. Cart-1 transcripts were also detected in primary chondrocytes, but not in numerous other cell types except very low levels in testis. In situ hybridization of rat embryos at different stages of development revealed relatively high levels of Cart-1 RNAs in prechondrocytic mesenchymal cells and in early chondrocytes of cartilage primordia. It is speculated that Cart-1 might play an important role in chondrogenesis. The second putative homeoprotein, rDlx, contains a Distal-less-like homeodomain. rDlx RNAs were also present at high levels in the rat chondrosarcoma tumor and in the cell line derived from this tumor. In situ hybridization of rat embryos revealed high levels of rDlx transcripts in the developing cartilages and perichondria of mature cartilages. rDlx transcripts were also detected in a number of nonchondrogenic tissues such as forebrain, otic vesicles, olfactory epithelia, apical ectodermal ridge (AER) of limb buds, the presumptive Auerbach ganglia of gastrointestinal tract. The unique expression pattern of rDlx suggests that it might play important roles in chondrogenesis and other aspects of embryogenesis. ^
Resumo:
During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^
Resumo:
Sox9 is a Sry-related HMG-domain containing transcription factor. Lines of evidence suggest that Sox9 has a potential role in skeletal development. During mouse development, Sox9 is predominantly expressed in all chondroprogenitors and differentiated chondrocytes, throughout the deposition of cartilage matrix. Mutations in one allele of SOX9 in humans result in campomelic dysplasia (CD), a skeletal dysplasia. syndrome characterized by the bowing of long bones. Moreover, Sox9 binds to and activates chondrocyte-specific enhancers in Col2a1 and Col11a2 genes. To further investigate the function of Sox9 in chondrogenesis, we analyzed chimeras derived from Sox9 heterozygous and homozygous null embryonic stem (ES) cells. In mouse chimeras, Sox9 −/− cells were excluded from all cartilages and did not express chondrocyte-specific genes. The segregation occurred during mesenchymal condensation. No cartilages developed in teratocarcinomas derived from Sox9 −/− ES cells. Mice heterozygous for the Sox9 mutation died neonatally and exhibited skeletal abnormalities resembling those of the CD patients. The Sox9 +/− mutants had a cleft palate and hypoplasia of scapula, pelvis and other skeletal structures derived by endochondral ossification. Bending of the radius, ulna and tibia cartilage was prominent at embryonic day 14.5 (E14.5). At E12.5 many pre-cartilaginous condensations were already defective. Advanced ossification was observed and the hypertrophic zone was enlarged in the growth plates, suggesting that Sox9 also regulates hypertrophic chondrocyte differentiation. Our results identify Sox9 as the first essential regulator of chondrocyte differentiation, which plays multiple roles in chondrogenesis. ^
Resumo:
Sox9 is a transcription factor required for chondrocyte differentiation and cartilage formation. In an effort to identify SOX9 interacting protein(s), we screened a chondrocyte cDNA library with a modified yeast two-hybrid method, Son of Sevenless (SOS) recruitment system (SRS). The catalytic subunit of cyclic AMP-dependent protein kinase A (PKA-Cα) and a new long form of c-Maf transcription factor (Lc-Maf) were found to interact specifically with SOX9. We showed here that two PKA phosphorylation consensus sites of SOX9 could be phosphorylated by PKA in vitro as well as in vivo. PKA phosphorylation of SOX9 increases its DNA binding and transcriptional activities on a Col2a1 chondrocyte-specific enhancer. Mutations of these two PKA phosphorylation sites markedly decreased the activation of SOX9 by PKA. ^ To test whether parathyroid hormone-related peptide (PTHrP) signaling results in SOX9 phosphorylation, we generated a phosphospecific antibody that specifically recognizes SOX9 that is phosphorylated at serine 181 (S 181) one of the two consensus PKA phosphorylation sites. Addition of PTHrP to COS7 cells cotransfected with SOX9 and PTH/PTHrP receptor strongly increased phosphorylation of SOX9 at S181; this phosphorylation was blocked by a PKA-specific inhibitor. In similar experiments we showed that PTHrP increased the activity of a SOX9-dependent Col2a1 enhancer. This increase in activity was abolished when a SOX9 mutant was used containing serine-to-alanine substitution in the two consensus PKA phosphorylation sites of SOX9. Using our phosphospecific SOX9 antibody we showed by immunohistochemistry of mouse embryos that Sox9 phosphorylated at S181 was localized almost exclusively in the pre-hypertrophic zone of the growth plate, an area corresponding to the major site of expression of PTH/PTHrP receptor. In contrast, no phosphorylation of Sox9 at S181 was detected in growth plates of PTH/PTHrP receptor null mutant mice. Sox9, regardless of phosphorylation state, was present in all chondrocytes of both genotypes except in hypertrophic chondrocytes. Thus, Sox9 is a target of PTHrP signaling and the PTHrP-dependent phosphorylation of SOX9 enhances its transcriptional activity. ^ In order to investigate the in vivo function of Sox9 phosphorylation by PKA, we are generating a mouse model of mutant Sox9 harboring point mutations in two PKA phosphorylation sites. Preliminary results indicated that heterozygous mice containing half amount of mutant Sox9 that can not be phosphorylated by PKA have normal skeletal phenotype and homozygous mice are being generated. ^ Lc-Maf encodes an extra ten amino acids at the carboxyl terminus of c-Maf and contains a completely different 3′ untranslated region. The interaction between SOX9 and Lc-Maf was further confirmed by co-immunoprecipitation and GST-pull down assays, which mapped the interacting domains of SOX9 to HMG DNA binding domain and that of Lc-Maf to basic leusine zipper motif. In situ hybridizations showed that RNA of Lc-Maf coexpressed with those of Sox9 and Col2a1 in areas of mesenchymal condensation during the early stages of mouse embryo development. A DNA binding site of Lc-Maf was identified at the 5′ part of a 48-bp Col2a1 enhancer element near the HMG binding site of SOX9. Lc-Maf and SOX9 synergistically activated a luciferase reporter plasmid containing a Col2al enhancer and increased the transcription of endogenous Col2a1 gene. In summary, Lc-Maf is the first identified SOX9-interating protein during chondrogenesis and may be an important activator of Col2a1 gene. ^
Resumo:
The small leucine-rich repeat proteoglycans (or SLRPs) are a group of extracellular proteins (ECM) that belong to the leucine-rich repeat (LRR) superfamily of proteins. The LRR is a protein folding motif composed of 20–30 amino acids with leucines in conserved positions. LRR-containing proteins are present in a broad spectrum of organisms and possess diverse cellular functions and localization. In mammals, the SLRPs are abundant in connective tissues, such as bones, cartilage, tendons, skin, and blood vessels. We have discovered a new member of the class I small leucine rich repeat proteoglycan (SLRP) family which is distinct from the other class I SLRPs since it possesses a unique stretch of aspartate residues at its N-terminus. For this reason, we called the molecule asporin. The deduced amino acid sequence is about 50% identical (and 70% similar) to decorin and biglycan. However, asporin does not contain a serine/glycine dipeptide sequence required for the assembly of O-linked glycosaminoglycans and is probably not a proteoglycan. The tissue expression of asporin partially overlaps with the expression of decorin and biglycan. During mouse embryonic development, asporin mRNA expression was detected primarily in the skeleton and other specialized connective tissues; very little asporin message was detected in the major parenchymal organs. The mouse asporin gene structure is similar to that of biglycan and decorin with 8 exons. The asporin gene is localized to human chromosome 9q22-9g21.3 where asporin is part of a SLRP gene cluster that includes ECM2, osteoadherin, and osteoglycin. This gene cluster of four LRR-encoding genes is embedded in a 238 kilobase intron of another novel gene named Tes9orf that is expressed primarily in the testes of the adult mouse. The SLRP genes are not present in Drosophila or C. elegans , but reside in three separate gene clusters in the puffer fish, mice and humans. Targeted disruption of individual mouse SLRP genes display minor connective tissue defects such as skin fragility, tendon laxity, minor growth plate defects, and mild osteoporosis. However, double and triple knockouts of SLRP genes exacerbate these phenotypes. Both the double epiphycan/biglycan and the triple PRELP/fibromodulin/biglycan knockout mice exhibit premature osteoarthritis. ^
Resumo:
Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.
Resumo:
Skeletal formation is a fundamental element of body patterning and is strictly regulated both temporally and spatially by a variety of molecules. Among these, retinoic acid (RA) has been shown to be involved in normal skeletal development. However, its pleiotropic effects have caused difficulty in identifying its crucial target cells and molecular mechanisms for each effect. Development of cartilage primordia is an important process in defining the skeletal structures. To address the role of RA in skeletal formation, we have generated mice expressing a dominant-negative retinoic acid receptor (RAR) in chondrogenic cells by using the type II collagen α1 promoter, and we have analyzed their phenotypes. These mice exhibited small cartilage primordia during development and retarded skeletal formation in both embryonic and postnatal periods. They also showed selective degeneration in their cervical vertebrae combined with homeotic transformations, but not in their extremities. The cervical phenotypes are reminiscent of phenotypes involving homeobox genes. We found that the expression of Hoxa-4 was indeed reduced in the cartilage primordia of cervical vertebrae of embryonic day 12.5 embryos. These observations demonstrate that endogenous RA acts directly on chondrogenic cells to promote skeletal growth in both embryonic and growing periods, and it regulates the proper formation of cervical vertebrae. Furthermore, RA apparently specifies the identities of the cervical vertebrae through the regulation of homeobox genes in the chondrogenic cells. Great similarities of the phenotypes between our mice and reported RAR knockout mice revealed that chondrogenic cells are a principal RA target during complex cascades of skeletal development.
Resumo:
Leptin is a 167-aa protein that is secreted from adipose tissue and is important in the regulation of energy balance. It also functions in hematopoiesis and reproduction. To assess whether leptin is involved in fetal growth and development we have examined the distribution of mRNAs encoding leptin and the leptin receptor (which has at least six splice variants) in the 14.5-day postcoitus mouse fetus and in the placenta using reverse transcription–PCR and in situ hybridization. High levels of gene expression for leptin, the leptin receptor, and the long splice variant of the leptin receptor with an intracellular signaling domain were observed in the placenta, fetal cartilage/bone, and hair follicles. Receptor expression also was detected in the lung, as well as the leptomeninges and choroid plexus of the fetal brain. Western blotting and immunocytochemistry, using specific antibodies, demonstrated the presence of leptin and leptin receptor protein in these tissues. These results suggest that leptin may play a role in the growth and development of the fetus, both through placental and fetal expression of the leptin and leptin receptor genes. In the fetus, leptin may be multifunctional and have both paracrine and endocrine effects.