993 resultados para CALIFORNIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of mineralogical and isotopic analyzes of sulfur and carbon in carbonate nodules and host bottom sediments and results of 14C measurement in carbonate nodules are reported. It is proved that the carbonate nodules formed 11-22 thousand years ago in anaerobic diagenesis of bottom sediments rich in organic matter. Isotopic light metabolic carbon dioxide was a source of carbonate for nodules. It formed during microbial degradation of organic matter of bottom sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seafloor recycling of organic materials in Santa Monica Basin, California was examined through in situ benthic chamber experiments, shipboard whole-core incubations and pore water studies. Mass balance calculations indicate that the data are internally consistent and that the estimated benthic exchange rates compare well with those derived from deep, moored conical sediment traps and hydrographic modeling. Pore water and benthic flux observations indicate that the metabolizable organic matter at the seafloor must be composed of at least two fractions of very different reactivities. While the majority of reactive organic compounds degrade quickly, with a half-life of <=6.5 years, 1/4 of the total metabolizable organic matter appears to react more slowly, with a half-life on the order of 1700 years. Down-core changes in pore water sulfate and titration alkalinity are not explained by stoichiometric models of organic matter diagenesis and suggest that reactions not considered previously must be influencing the pore water concentrations. Measured recycling and burial rates indicate that 43% of the organic carbon reaching the basin seafloor is permanently buried. The results for Santa Monica Basin are compared to those reported for other California Borderland Basins that differ in sedimentation rate and bottom water oxygen content. Organic carbon burial rates for the Borderland Basins are strongly correlated with total organic carbon deposition rate and bulk sedimentation rate. No significant correlation is observed between carbon burial and bottom water oxygen, extent of oxic mineralization and sediment mixing. Thus, for the California Borderlands, it appears that carbon burial rates are primarily controlled by input rates and not by variations in preservation.