885 resultados para Butt joints, Interface, Contact, Bolt tightness, 3D finite element modelling
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Because the biomechanical behavior of dental implants is different from that of natural tooth, clinical problems may occur. The mechanism of stress distribution and load transfer to the implant/bone interface is a critical issue affecting the success rate of implants. Therefore, the aim of this study was to conduct a brief literature review of the available stress analysis methods to study implant-supported prosthesis loading and to discuss their contributions in the biomechanical evaluation of oral rehabilitation with implants. Several studies have used experimental, analytical, and computational models by means of finite element models (FEM), photoelasticity, strain gauges and associations of these methods to evaluate the biomechanical behavior of dental implants. The FEM has been used to evaluate new components, configurations, materials, and shapes of implants. The greatest advantage of the photoelastic method is the ability to visualize the stresses in complex structures, such as oral structures, and to observe the stress patterns in the whole model, allowing the researcher to localize and quantify the stress magnitude. Strain gauges can be used to assess in vivo and in vitro stress in prostheses, implants, and teeth. Some authors use the strain gauge technique with photoelasticity or FEM techniques. These methodologies can be widely applied in dentistry, mainly in the research field. Therefore, they can guide further research and clinical studies by predicting some disadvantages and streamlining clinical time.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.
Resumo:
The objective of this study was to present the comparison between analytical and numerical results trying to identify the differences and behaviors of the variation of the principal stresses and the maximum contact pressure for different model configurations. The analytical equations of the theory of Hertz from the boundary conditions adopted by him were differences are shown. A step-by-step of developing the model indicating the geometric dimensions, surface contact, type of contact, the formulation used by the software, type of mesh, as well as the boundary conditions and load was presented. In the results, the stresses calculated analytically and compared with the stresses obtained by the finite element simulation software indicating the changes have been made
Resumo:
Nowadays, the automotive industry is working to optimize the design of engines, in order to reduce the fuel consumption with acceptable efficiency ratio. This undergraduate thesis is aimed at perform a kinematic/dynamic analysis of a slider-crank mechanism that is part of a four stroke internal combustion engine, the same engine that was used in the analysis described by Montazersadhd and Fatemi (2007). Two algorithms were developed based on Kane’s method to calculate velocities and accelerations of the mechanism bodies, and provide the acting forces at connecting rod joints. A SimMechanics model was developed to simulate the engine, and monitoring the same parameters that were calculated with the algorithms. The results obtained with both approaches were satisfactory and showed good agreement with the values provided by Montazersadhd and Fatemi (2007). The obtained results showed that the axial component of the rod joint efforts was caused by the pressure exerted on the piston head,whereas the radial component was related with the action of inertia loads. Besides, this thesis presents a connecting rod assembly mesh that is going to be used for static and fatigue finite element analysis in the future
Resumo:
This work is to analyze the behavior of context concentrated stresses generated around a nozzle connected to a pressure vessel. For this analysis we used the finite element method via a computer interface, the software ANSYS WORKBENCH. It was first necessary to study and intensive training of the software used, and also a study of the ASME Code, Section VIII, which is responsible for the standards used in pressure vessels. We analyzed three cases, which differ primarily in the variation of the diameter of the nozzle in order to analyze the variation of the stresses according to the variation of the diameters. The nozzle diameters were 35, 75 and 105 mm. After the model designed vessel, a pressure was applied on the innervessel of 0.5 MPa. For the smallest diameter, was found the lowest tensions concentrated. Varying between 1 and 223 MPa. Increasing the diameter of the nozzle resulted in increased tensions concentrated around the junction nozzle /vessel. The maximum stresses increased by 78% when the value was increased in diameter from 35 to 75 mm. Since the increase in diameter from 75 to 105 mm, the values of the tensions increased around 43%. These figures emphasize that stress concentrations increased with increasing the diameter of the nozzles, but not linearly
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
This work aims the design and analysis of a thrust frame system for a liquid fuel rocket engine. The project was developed following the design requirements established by the Division of Space Propulsion of the Institute of Aeronautics and Space. The layout of the structure was developed with the aid of a software of 3D modeling and static and dynamic analysis were performed by using a finite element package. The results of the analyzes helped in defining the layout of the structure which met all design requirements. The safety factor and the mass achieved were comfortably low, which may be useful in the future because the liquid fuel rocket engine is still in development
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The finite element method is of great importance for the development and analysis of a new product being designed or already on the market, and that requires some specific request or special application. The tower crane, being an essential equipment for modern construction to increase productivity and safety on construction sites, is required for many types of special applications day after day, in many kinds of work. Paying attention to this growing need for handling special projects for the tower crane, faced with the importance and necessity of development and improvement of knowledge in more accurate and practical calculation methods such as the finite element method , for greater agility and precision in the response to a new project. The tower crane is defined by the maximum load moment that it can act with a certain amount of load. The tower crane which will be analyzed in this work , for example, is a tower crane with a resulting capacity of 85 Metric Tons which are considered basic dimensions data of a fisical tower crane of a crane company Liebherr in Guaratinguetá . Thus, the project analysis will begin with the threedimensional representation of the crane lines with AutoCAD software , conversion of this model to the format accepted ANSYS Workbench and completion of 3D modeling of structural components in Design module ANSYS software. After structural modeling is completed, the simulation is performed in static simulation of ANSYS Workbench software mode. The standards will be adopted to DIN (Deutsches Institut für Normung) and EN 14439 (Europäische Normung 14439) and some NR 's related to specific security class of tower cranes, which will be referred throughout the work