965 resultados para Burkholderia (Bacteria)
Resumo:
The presence of yeasts and bacteria was studied in 26 patients with denture stomatites, and the results compared with the data of the normal mucosa foi edentoulous patients, who used or not upper dentures. The use of dentures caused an increase in the amount of yeasts, and there was a correlation with the severity of the stomatitis. Gram positives cocci and bacilus predominated in all studied groups, but in cases of stomatitis there was an increase in the amount of Gram negative cocci and filamentous. These results suggest that besides yeasts, modifications of the bacteria flora can be relevant for the development of denture stomatitis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this study was to investigate the effect of fermentation with Lactobacillus acidophilus CRL 1014 on the physicochemical, microbiological and sensory characteristics of a hamburger product like processed with chicken meat and okara flour, with reduction of curing salts. A mixture of ingredients containing 90% chicken meat and 10% okara flour was subjected to the following treatments: F1: fermented with Lactobacillus acidophilus; F2:75 mg nitrite/kg and fermented with Lactobacillus acidophilus; F3: 150 mg nitrite/kg and unfermented. The quality of the “hamburgers” was assessed by physical and chemical analysis (pH, cooking yield and shrinkage), chemical composition, microbiological tests (Salmonella spp., count of sulphite-reducing clostridia, staphylococos coagulase-positive, total coliforms and Escherichia coli) and sensory analysis (sensory acceptance and purchase intent). During the first six days of fermentation, there was a decrease in pH from approximately 6.33 to 5.10. All the samples showed the same chemical composition (p < 0.05). The fermentation process was observed to inhibit the multiplication of microorganisms of several groups: coagulasepositive staphylococci, sulphite-reducing clostridia, Salmonella spp. and E. coli. The different “hamburgers” formulations showed high scores for all the sensory attributes evaluated, without differing from each other (p < 0.05). The results showed that the use of L. acidophilus CRL 1014 enabled the production of a safe product, with good physicochemical and sensory characteristics, in the absence of curing salts.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Objective. To estimate the prevalence of bacteria isolated in samples from the hands of school-age children at a hospitalization unit. Methodology. In 2009, strains were cultured from the hands of 90 school-age children at the pediatric hospitalization unit of Hospital Estadual Bauru (São Paulo, Brazil). After culture of the samples, the isolated bacteria were identified. Results. In 98% of the samples taken from the children, bacteria were isolated. Coagulase-negative Staphilococcus was isolated in 64% of the samples, followed by Staphilococcus aureus (5%) and Pseudomonas aeruginosa (1%). Conclusion. In most of the samples from the children’s hands, bacteria were isolated. Therefore, educative actions about hygiene habits in- and outside the hospital environment should be reinforced, aimed at children and their companions.
Resumo:
Background: Imbalance in bacterial species composition of the gut microbiota is one of the factors associated with the cause or complication of the symptoms of Crohn's disease (CD). This disequilibrium consists in the reduction of biodiversity, decrease of genus such as Bifidobacterium and elevation of species such as Escherichia coli. Human microbiota varies among subjects of a same population irrespective of their health condition and among individuals living in distinct geographic locations. In animal models, sex related differences could also be observed in gut bacterial species composition under some pathological conditions. Experiments conducted with mice have demonstrated that the manifestation of type 1 diabetes (T1D) could be under the influence of the animal sex and its serum level of testosterone, which in turn could be modulated by a particular gut microbiota. Considering the existence of similar features between T1D and CD, such as strong genetic component and malfunctioning of the immune system, we investigated whether differences could be observed in the gut microbiota dysbiosis of male and female CD patients. Methods: Fifty and 5 gut mucosal biopsies from 25 adult CD patients (11 males and 14 females) and 43 specimens of an equivalent clinical material from 22 control subjects (11 males and 11 females) were screened for bacterial biodiversity by analyzing sequences of 16SrDNA V6 region. A number of 2-3 samples each from distinct gut segments (from ileum to rectum) were taken from each subject. The 16SrDNA sequences were obtained by sequencing PCR amplicons of the corresponding gene in the Ion torrent PGM sequencer. Identification and classification of the bacterial groups followed the Ribosomal Database Project (RDP) website pipeline. The relationships of the bacterial taxa with each of the study parameters was performed by compiling the data in a MS Excel and the level of statistical significance determined by the Chi-square test. Results: A total of 3203 16SrDNA sequences were detected in the 98 biopsies samples, the majority of which matching Proteobacteria, Firmicutes, Bacterioidetes, and Actinobacteria. The percentage of DNA sequences for each of these phyla found in Male control subjects/Male CD patients was 40.5/33, 32.7/32.4, 20.8/24.5, and 4.4/4,4 for Proteobacteria, Firmicutes, Bacterioidetes, and Actinobacteria, respectively. In Female comparisons, these values were 35.6/42, 39.2/26.3, 19.8/23.3, 5.2/7. Both Male and Female CD patients presented higher numbers of sequences of Actinobacteria and Bacterioidetes than those of control subjects of the same gender. Case-control differences for Firmicutes could be observed only in female comparisons and, for Proteobacteria, although case-control differences were observed in both genders, the nature of difference was distinct, since while in CD female patients a higher number of sequences matching this phylum was detected, in males a reduced number was observed, in comparison with controls. The species responsible for the Proteobacteria variation in both gender was Escherichia coli. Conclusions: The data presented above suggest that any analysis of dysbiosis in CD must take in account the patient's gender, an observation particularly relevant for Escherichia coli, whose association with CD has been most intensively investigated and for which the present study shows a reverse quantitative variation regarding the patients' gender.
Resumo:
We evaluated the effect of gamma irradiation doses (0, 125, 250, and 500 Gy) in control of psychrotrophic bacteria in different strains of Agaricus bisporus (ABI-07/06, ABI-05/03, and PB-1) during storage, cultivated in composts based on oat straw (Avena sativa) and Brachiaria spp. The experimental design was completely randomized in a factorial scheme 4 2 3 (irradiation doses composts strains), with 24 treatments, each consisting of 2 replicates, totaling 48 experimental units (samples of mushrooms). The mushrooms collected from all culture conditions were packaged in plastic polypropylene with 200 g each and subjected to Cobalt-60 irradiator, type Gammacell 220, and dose rate 0.740 kGy h–1 , according to the treatments. Subsequently, the control (nonirradiated) and other treatments were maintained at 4 ± 1°C and 90% relative humidity (RH) in a climatic chamber to perform the microbiological analysis of mushrooms on the 1st and 14th day of storage. According to the results, it was found that the highest mean colony psychotrophic count, after 14 days of storage, was observed in strain ABI-07/06 1.30 × 108 g -1 most probable number (MPN) in nonirradiated mushrooms, coming from Brachiaria grass-based compost, and this same strain under the same storage conditions, coming from the same type of compost that underwent a dose of 500 Gy, obtained a significant reduction in mean colonies of psychrotrophic bacteria (2.25 × 104 g –1 MPN). Thus, the irradiation doses tested favored reducing the number of colonies of psychrotrophic bacteria, regardless of the type of compound and strain of A. bisporus.
Resumo:
No Abstract
Resumo:
Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.
Resumo:
Biofilms represent a great concern for food industry, since they can be a source of persistent contamination leading to food spoilage and to the transmission of diseases. To avoid the adhesion of bacteria and the formation of biofilms, an alternative is the pre-conditioning of surfaces using biosurfactants, microbial compounds that can modify the physicochemical properties of surfaces changing bacterial interactions and consequently adhesion. Different concentrations of the biosurfactants, surfactin from Bacillus subtilis and rhamnolipids from Pseudomonas aeruginosa, were evaluated to reduce the adhesion and to disrupt biofilms of food-borne pathogenic bacteria. Individual cultures and mixed cultures of Staphylococcus aureus, Listeria monocytogenes and Salmonella Enteritidis were studied using polystyrene as the model surface. The pre-conditioning with surfactin 0.25% reduced by 42.0% the adhesion of L monocytogenes and S. Enteritidis, whereas the treatment using rhamnolipids 1.0% reduced by 57.8% adhesion of L monocytogenes and by 67.8% adhesion of S. aureus to polystyrene.Biosurfactants were less effective to avoid adhesion of mixed cultures of the bacteria when compared with individual cultures. After 2 h contact with surfactin at 0.1% concentration, the pre-formed biofilms of S. aureus were reduced by 63.7%, L. monocytogenesby 95.9%, S. Enteritidis by 35.5% and the mixed culture biofilm by 58.5%. The rhamnolipids at 0.25% concentration removed 58.5% the biofilm of S. aureus, 26.5% of L monocytogenes, 23.0% of S. Enteritidis and 24.0% the mixed culture after 2 h contact. In general, the increase in concentration of biosurfactants and in the time of contact decreased biofilm removal percentage. These results suggest that surfactin and rhamnolipids can be explored to control the attachment and to disrupt biofilms of individual and mixed cultures of the food-borne pathogens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.
Resumo:
Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Background: Treatment of chronically infected wounds is a challenge, and bacterial environmental contamination is a growing issue in infection control. Ozone may have a role in these situations. The objective of this study was to determine whether a low dose of gaseous ozone/oxygen mixture eliminates pathogenic bacteria cultivated in Petri dishes. Methods: A pilot study with 6 bacterial strains was made using different concentrations of ozone in an ozone-oxygen mixture to determine a minimally effective dose that completely eliminated bacterial growth. The small and apparently bactericidal gaseous dose of 20 mu g/mL ozone/oxygen (1: 99) mixture, applied for 5min under atmospheric pressure was selected. In the 2nd phase, eight bacterial strains with well characterized resistance patterns were evaluated in vitro using agar-blood in adapted Petri dishes (10(5) bacteria/dish). The cultures were divided into 3 groups: 1-ozone-oxygen gaseous mixture containing 20 mu g of O-3/mL for 5 min; 2- 100% oxygen for 5 min; 3- baseline: no gas was used. Results: The selected ozone dose was applied to the following eight strains: Escherichia coli, oxacillin-resistant Staphylococcus aureus, oxacillin-susceptible Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, extended-spectrum beta-lactamase-producing Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, Acinetobacter baumannii susceptible only to carbapenems, and Pseudomonas aeruginosa susceptible to imipenem and meropenem. All isolates were completely inhibited by the ozone-oxygen mixture while growth occurred in the other 2 groups. Conclusion: A single topical application by nebulization of a low ozone dose completely inhibited the growth of all potentially pathogenic bacterial strains with known resistance to antimicrobial agents.
Resumo:
The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.