996 resultados para Bulk Amorphous Alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

从溶液中聚集体的角度研究了溶液的热历史改变生长出的蛋白质晶体的数目和尺寸的内在原因.将在281和309 K下保存1 d的两组溶菌酶溶液按不同比例混合,加入沉淀剂生长晶体.随着高温溶液的比例增加,生长出的晶体数目减少,同时溶液中生长基元的尺寸增大.在5周内,采用动态光散射对281,293和309K三种温度下保存的溶菌酶溶液中聚集体的变化情况进行监测,发现溶液中均存在大小不同的两部分聚集体,称之为小聚集体与多聚体.前者的尺寸基本不随保存时间而变化,而后者尺寸随保存时间增加而减小,减小的速度与保存温度有关.多聚体的尺寸经过5周后和小聚集体基本相同.研究结果表明,处于无序聚集阶段的溶液的均一化程度和成核阶段生长基元的尺寸受到了溶液热历史的影响,并最终对晶体的数目产生影响.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niobium-silicide alloys have great potential for high temperature turbine applications. The two-phase Nb/Nb5Si3 in situ composites exhibit a good balance in mechanical properties. Using the 52 in drop tube, the effect of undercooling and rapid solidification on the solidification process and micro-structural characterization of Nb-Si eutectic alloy was studied. The microstructures of the Nb-Si composites were investigated by optics microscope (OM), X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with X-ray energy dispersive spectrometry (EDS). Up to 480 K, deep undercooling of the Nb-Si eutectic samples was successfully obtained, which corresponds to 25% of the liquidus temperature. Contrasting to the conventional microstructure usually found in the Nb-Si eutectic alloy, the microstructure of the undercooled sample is divided into the fine and coarse regions. The most commonly observed microstructure is Nb+Nb5Si3, and the Nb3Si phase is not be found. The change of coarseness of microstructure is due to different cooling rates during and after recalescence. The large undercooling is sufficient to completely bypass the high temperature phase field.