1000 resultados para Brain oscillations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Centers for Disease Control and Prevention, unintentional injury is the fifth leading cause of death for all age groups and the first leading cause of death for people from 1 to 44 years of age in the United States, while homicide remains the 2nd leading cause of death for 15 to 24 years old (CDC, 2006). In 2004, there were approximately 144,000 deaths due to unintentional injuries in the US; 53% of which represent people over 45 years of age (CDC, 2004). With 20,322 suicidal deaths and 13,170 homicidal deaths, intentional injury deaths affect mostly people under 45 years old. On average, there are 1,150 unintentional deaths per year in Iowa. In 2004, 37% of unintentional deaths were due to motor vehicle accidents (MTVCC) occurring across all age ranges and 30% were due to falls involving persons over 65 years of age 82% of the time (IDPH Health Stat Div., 2004). The most debilitating outcome of injury is traumatic brain injury, which is characterized by the irreversibility of its damages, long-term effects on quality of life, and healthcare costs. The latest data available from the CDC estimated that, nationally, 50,000 traumatic brain injured (TBI) people die each year; three times as many are hospitalized and more than twenty times as many are released from emergency room (ER) departments (CDC, 2006). Besides the TBI registry, brain injury data is also captured through three other data sources: 1) death certificates; 2) hospital inpatient data; and, 3) hospital outpatient data. The inpatient and outpatient hospital data are managed by the Iowa Hospital Association, which provides to Iowa Department of Public Health the hospital data without personal identifiers. (The hospitals send reports to the Agency of Health Care Research and Quality, which developed the Health Care Utilization Project and its product, the National Inpatient Sample).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termed the “silent epidemic,” traumatic brain injury (TBI) is the most debilitating outcome of injury, and is characterized by the irreversibility of its damages, long-term effects on quality of life and healthcare costs. The latest data available from the CDC estimate that nationally, 52,000 people die each year from TBI2. In Iowa, TBI is a major public health problem. The numbers and rates of hospitalizations and emergency department (ED) visits due to TBIs are steadily increasing. From 2006 to 2008, there were on average 545 injury deaths per year. Among the injured Iowans, TBI constituted nearly 30 percent (545) of all injury deaths, ten percent (1,591) of people hospitalized and seven percent (17,696) of ED visitors. 3 The state of Iowa has been supporting secondary prevention services to TBI survivors for several years. An Iowa organization that has made a significant effort in assisting TBI survivors is the Brain Injury Association of Iowa (BIAIA). The BIAIA administers the IBIRN program in cooperation with the Iowa Department of Public Health (IDPH) through HRSA TBI Implementation grant funding and state appropriations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 2,200 Iowans each year experience a traumatic brain injury that requires hospitalization. Of those, more than 750 will experience long-term disability as a result. According to a 2000 CDC report, there are an estimated 50,000 such individuals living in Iowa – a number similar to the population of Ames. As part of an enterprise-wide effort to ensure that all Iowans, including those with brain injuries, have access to quality healthcare, Governor Tom Vilsack signed the Brain Injury Services program bill on May 23. The bill will allow the Iowa Department of Public Health (IDPH) to implement a one-of-a-kind program to help those with brain injuries and their families in navigating and maximizing the Iowa community-based service system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mismatch negativity (MMN) overlaps with other auditory event-related potential (ERP) components. We examined the ERPs of 50 9- to 11-year-old children for vowels /i/, /y/ and equivalent complex tones. The goal was to separate MMN from obligatory ERP components using principal component analysis and equal probability control condition. In addition to the contrast of the deviant minus standard response, we employed the contrast of the deviant minus control response, to see whether the obligatory processing contributes to MMN in children. When looking for differences in speech deviant minus standard contrast, MMN starts around 112 ms. However, when both contrasts are examined, MMN emerges for speech at 160 ms whereas for nonspeech MMN is observed at 112 ms regardless of contrast. We argue that this discriminative response to speech stimuli at 112 ms is obligatory in nature rather than reflecting change detection processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress in neuroscience has yielded major findings regarding brain maturation during adolescence. Unlike the body, which reaches adult size and morphology during this period, the adolescent brain is still maturing. The prefrontal cortex appears to be an important locus of maturational change subserving executive functions that may regulate emotional and motivational issues. The recent expansion of the adolescent period has increased the lag between the onset of emotional and motivational changes activated by puberty and the completion of cognitive development-the maturation of self-regulatory capacities and skills that are continuing to develop long after puberty has occurred. This "disconnect" predicts risk for a broad set of behavioral and emotional problems. Adolescence is a critical period for high-level cognitive functions such as socialization that rely on maturation of the prefrontal cortex. Intervention during the period of adolescent brain development provides opportunities and requires an interdisciplinary approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xenobiotic exposure is a risk factor in the etiology of neurodegenerative disease. It was recently hypothesized that restricted exposure during brain development could predispose for a neurodegenerative disease later in life. As neuroinflammation contributes to progressive neurodegeneration, it is suspected that neurodevelopmental xenobiotic exposure could elicit a neuroinflammatory process, which over time may assume a detrimental character. We investigated the neurotoxic effects of paraquat (PQ) in three-dimensional whole rat brain cell cultures, exposed during an early differentiation stage, comparing immediate effects-directly post exposure-with long-term effects, 20 days after interrupted PQ-administration. Adverse effects and neuroinflammatory responses were assessed by measuring changes in gene- and protein-expression as well as by determining cell morphology changes. Differentiating neural cultures were highly susceptible to PQ and showed neuronal damage and strong astrogliosis. After the 20-day washout period, neurons partially recovered, whereas astrogliosis persisted, and was accompanied by microglial activation of a neurodegenerative phenotype. Our data shows that immediate and long-term effects of subchronic PQ-exposure differ. Also, PQ-exposure during this window of extensive neuronal differentiation led to a delayed microglial activation, of a character that could promote further pro-inflammatory signals that enable prolonged inflammation, thereby fueling further neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility to measure brain perfusion using intravoxel incoherent motion (IVIM) MRI has been reported recently with currently clinically available technology. The method is intrinsically local and quantitative, but is contaminated by partial volume effects with cerebrospinal fluid (CSF). Signal from CSF can be suppressed by a 180° inversion recovery (180°-IR) magnetization preparation, but this also leads to strong suppression of blood and brain tissue signal. Here, we take advantage of the different T2 relaxations of blood and brain relative to CSF, and implement a T2 -prepared IVIM (T2prep IVIM) inversion recovery acquisition, which permits a recovery of between 43% and 57% of arterial and venous blood magnetization at excitation time compared with the theoretical recovery of between 27% and 30% with a standard 180°-IR. We acquired standard IVIM (IVIM), T2prep IVIM and dynamic susceptibility contrast (DSC) images at 3 T using a 32-multichannel receiver head coil in eight patients with known large high-grade brain tumors. We compared the contrast and contrast-to-noise ratio obtained in the corresponding cerebral blood volume images quantitatively, as well as subjectively by two neuroradiologists. Our findings suggest that quantitative cerebral blood volume contrast and contrast-to-noise ratio, as well as subjective lesion detection, contrast quality and diagnostic confidence, are increased with T2prep IVIM relative to IVIM and DSC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.