872 resultados para Bovino - Melhoramento genético
Resumo:
Objetivou-se verificar a possibilidade de utilização da prenhez de novilhas aos 16 meses (Pr16) como critério de seleção e as possíveis associações genéticas entre prenhez em novilhas aos 16 meses e o peso à desmama (PD) e o ganho de peso médio da desmama ao sobreano (GP). Foram realizadas análises uni e bicaracterísticas para estimação dos componentes de co-variância, empregando-se um modelo animal linear para peso à desmama e ganho de peso da desmama ao sobreano e não-linear para Pr16. A estimação dos componentes de variância e da predição dos valores genéticos dos animais foi realizada por Inferência Bayesiana. Distribuições flat foram utilizadas para todos os componentes de co-variância. As estimativas de herdabilidade direta para Pr16, PD e GP foram 0,50; 0,24 e 0,15, respectivamente, e a estimativa de herdabilidade materna para o PD, de 0,07. As correlações genéticas foram -0,25 e 0,09 entre Pr16, PD e GP, respectivamente, e a correlação genética entre Pr16 e o efeito genético materno do PD, de 0,29. A herdabilidade da prenhez aos 16 meses indica que essa característica pode ser utilizada como critério de seleção. As correlações genéticas estimadas indicam que a seleção por animais mais pesados à desmama, a longo prazo, pode diminuir a ocorrência de prenhez aos 16 meses de idade. Além disso, a seleção para maior habilidade materna favorece a seleção de animais mais precoces. No entanto, a seleção para ganho de peso da desmama ao sobreano não leva a mudanças genéticas na precocidade sexual em fêmeas.
Resumo:
Objetivou-se, com este trabalho, estimar a herdabilidade (h²) para prenhez de novilhas e sua correlação genética (rg) com idade ao primeiro parto (IPP), em animais da raça Nelore. A prenhez de novilhas foi definida de três formas: prenhez aos 16 meses (Pr16) - para as novilhas que pariram com menos de 31 meses, atribuiu-se 1 (sucesso) e, para aquelas que pariram após 30,99 meses ou que não pariram, atribuiu-se 0 (fracasso); prenhez aos 24 meses (Pr24) - para as novilhas que pariram até 46 meses (incluindo as Pr16), foi atribuído 1 e, para aquelas que não pariram 0; e prenhez da novilha (PrN) - atribuiu-se classificação 2 para as que pariram com menos de 31 meses, 1 para as que pariram entre 31 e 46 meses e 0 para as que não pariram. Os arquivos, analisados pelo Método R e Inferência Bayesiana, continham registros de 30.802 novilhas desmamadas. As análises forneceram médias de estimativas de h² de 0,52, 0,12 e 0,16 para Pr16, Pr24 e PrN, respectivamente, pelo Método R. O valor médio obtido por Inferência Bayesiana foi de 0,45 para Pr16. A rg estimada entre Pr16 e IPP foi -0,32. Os resultados indicam que, para selecionar para precocidade sexual, é necessário expor todas as fêmeas em idades jovens e que a mensuração da taxa de prenhez por meio da Pr16 é pertinente, uma vez que esta característica apresenta variabilidade genética alta e deve responder eficientemente à seleção com possibilidades de rápido ganho genético. A análise indicou também que Pr16 e IPP são determinadas em grande parte por genes diferentes.
Resumo:
Techniques of optimization known as metaheuristics have achieved success in the resolution of many problems classified as NP-Hard. These methods use non deterministic approaches that reach very good solutions which, however, don t guarantee the determination of the global optimum. Beyond the inherent difficulties related to the complexity that characterizes the optimization problems, the metaheuristics still face the dilemma of xploration/exploitation, which consists of choosing between a greedy search and a wider exploration of the solution space. A way to guide such algorithms during the searching of better solutions is supplying them with more knowledge of the problem through the use of a intelligent agent, able to recognize promising regions and also identify when they should diversify the direction of the search. This way, this work proposes the use of Reinforcement Learning technique - Q-learning Algorithm - as exploration/exploitation strategy for the metaheuristics GRASP (Greedy Randomized Adaptive Search Procedure) and Genetic Algorithm. The GRASP metaheuristic uses Q-learning instead of the traditional greedy-random algorithm in the construction phase. This replacement has the purpose of improving the quality of the initial solutions that are used in the local search phase of the GRASP, and also provides for the metaheuristic an adaptive memory mechanism that allows the reuse of good previous decisions and also avoids the repetition of bad decisions. In the Genetic Algorithm, the Q-learning algorithm was used to generate an initial population of high fitness, and after a determined number of generations, where the rate of diversity of the population is less than a certain limit L, it also was applied to supply one of the parents to be used in the genetic crossover operator. Another significant change in the hybrid genetic algorithm is the proposal of a mutually interactive cooperation process between the genetic operators and the Q-learning algorithm. In this interactive/cooperative process, the Q-learning algorithm receives an additional update in the matrix of Q-values based on the current best solution of the Genetic Algorithm. The computational experiments presented in this thesis compares the results obtained with the implementation of traditional versions of GRASP metaheuristic and Genetic Algorithm, with those obtained using the proposed hybrid methods. Both algorithms had been applied successfully to the symmetrical Traveling Salesman Problem, which was modeled as a Markov decision process
Resumo:
On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results
Resumo:
Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and Rényi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
O aumento significativo da produção de milho na segunda safra no Brasil, principalmente no centro-sul do país, têm estimulado os programas de melhoramento da cultura a selecionar genótipos que sejam adaptáveis às condições climáticas das diferentes épocas de semeadura. Nesse sentido, o objetivo do presente trabalho foi quantificar a interação progênies x épocas de semeadura e verificar seus reflexos no progresso genético com o uso de índice de seleção multivariado para seleção de progênies do Composto Isanão VF-1 de milho. As semeaduras foram realizadas na segunda safra em 2004 e na primeira safra do ano agrícola 2004/05. Foram utilizadas 71 progênies de meios irmãos avaliadas em blocos ao acaso, com três repetições. Os caracteres avaliados foram: altura de plantas, altura de espigas, tombamento, prolificidade e rendimento de grãos. Realizaram-se a decomposição da interação progênies x épocas e foram estimados os ganhos pelo índice de seleção descrito por Mulamba e Mock. Houve predomínio da interação do tipo simples para maioria dos caracteres, exceto para prolificidade, que revelou 86% de interação do tipo complexa. Pelo índice de Mulamba e Mock, os ganhos proporcionais mais adequados para o conjunto de caracteres avaliados foi obtido pelos pesos econômicos atribuídos por tentativas. Os ganhos preditos foram de 1,41, 0,86, -13,03, 9,54 e 16,12% para altura de planta, altura de espiga, tombamento, prolificidade e rendimento de grãos, respectivamente.
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho foi estimar os ganhos genéticos de um teste de progênies de seringueira para a produção de borracha seca e, com base no maior tamanho efetivo populacional e maior ganho genético, obter os melhores indivíduos. Foram utilizadas 30 progênies de meios-irmãos, provenientes de sementes de polinização mista - alogamia e autogamia - de testes clonais no Estado de São Paulo. Utilizou-se o delineamento experimental de blocos ao acaso, com 30 tratamentos (progênies), 3 repetições e parcelas lineares de 10 plantas, em um espaçamento de 3x3 m, o que totalizou 900 plantas úteis. Aos três anos, o perímetro, a 50 cm do solo (PA50), e a produção de borracha seca (PBS) foram avaliadas por meio do teste precoce de produção Hamaker Morris-Mann (HMM). As variáveis foram analisadas pelo método de modelo linear misto, via procedimento REML/BLUP, em progênies com sistema reprodutivo misto e taxa de autofecundação de 22%. A identificação dos 20 melhores indivíduos quanto à PBS e ao PA50 proporcionou ganho genético de 67,96 e 16,48%, respectivamente, e um coeficiente de endogamia de aproximadamente 2,82%. O teste de progênies proporciona produção de sementes com melhor valor genético, grande variabilidade e baixa endogamia
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
OBJETIVO: Comparar uma malha comercial de poliéster com o pericárdio bovino preservado em glicerina na reconstituição de defeitos da parede abdominal. MÉTODOS: Foram utilizados 30 ratos, divididos em dois grupos eqüitativos. Efetuou-se uma excisão retangular de 2,5 x 2 cm, incluindo toda a musculatura abdominal e peritônio. No grupo I a parede abdominal foi reparada com malha de poliéster e no grupo II com pericárdio bovino conservado em glicerina. Os animais foram sacrificados aos 15, 60 e 90 dias de pós-operatório, sendo o local cirúrgico avaliado macroscópica e histologicamente. RESULTADOS: Os animais do grupo I apresentaram aderências mais severas e em maior número quando comparados aos do grupo II; porém, sem comprometimento funcional. A análise histológica revelou incorporação dos tecidos aos implantes, com maior resposta fibroblástica nos animais do grupo I. CONCLUSÃO: A malha de poliéster oferece maior resistência estrutural e resposta fibroblástica mais intensa; contudo, promove grande quantidade de aderências às vísceras abdominais, quando comparada ao pericárdio bovino.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)