943 resultados para Bone marrow transplants
Resumo:
Paepalantine is an isocoumarin isolated from Paepalanthus vellozioides which showed antimicrobial activity in in vitro experiments. In the present study, paepalantine was tested for possible clastogenic and cytotoxic action. Cultures from different individuals were treated with paepalantine at concentrations of 20, 40 and 80 mu g/ml. The effect of isocoumarin was also tested in an in vivo assay using Wistar rat bone marrow cells. Paepalantine was administered intraperitoneally at concentrations of 6.25, 12.5 and 25 mg/kg body weight. Under these conditions paepalantine did not have a clastogenic effect, but was significantly cytotoxic in the in vitro and in vivo mammalian cell systems tested in the present work. (C) 1999 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Os objetivos deste estudo foram estabelecer um protocolo para a análise de minissatélites ou VNTRs e microssatélites ou STRs em pacientes que se submeteram ao TMO alogênico; verificar a validade da metodologia e dos loci estudados e avaliar o tipo de recuperação do paciente. Foram analisados o DNA do paciente anterior e posterior ao transplante de 14 indivíduos e dos respectivos doadores. Amplificações por PCR de seis loci: D1S80, SE33, HumTH01, 33.6, HumARA e HumTPO foram realizadas. Os produtos amplificados foram separados por eletroforese vertical em gel de poliacrilamida, e os fragmentos visualizados por coloração pela prata. Esse procedimento mostrou ser válido na verificação da recuperação alogênica, autóloga e provavelmente na quimérica. da somatória dos loci estudados, 63,1% apresentaram resultados possíveis de serem avaliados e, desses, 19,0% mostraram resultado informativo, 13,1% parcialmente informativo e 31,0% não informativo. Os 36,9% restantes não foram possíveis de avaliação. Dos loci avaliados, o que demostrou maior índice de resultado informativo foi o SE33, parcialmente informativo o HumTPO e não informativo o HumTH01, sendo o locus 33.6 o que mais apresentou resultados não possíveis de serem avaliados. Por outro lado, determinou-se a recuperação do paciente posterior ao transplante em 71,4% dos indivíduos, sendo que, desses, 90% apresentaram recuperação alogênica e 10% recuperação autóloga.
Resumo:
The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process
Resumo:
A number of evidences show the influence of the growth of injured nerve fibers in Peripheral Nervous System (PNS) as well as potential implant stem cells (SCs) to make it more suitable for nerve regeneration medium. In this perspective, this study aimed to evaluate the plasticity of mesenchymal stem cells from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants (D-10) and fibroblast growth factor-2 (FGF-2). In this perspective, the cells were cultivated only with DMEM (group 1), only with D-10(group 2), only with FGF-2(group 3) or with D-10 and FGF-2(group 4). The growth and morphology were assessed over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200 on the fourth day of cultivation. Cells cultured with conditioned medium alone or combined with FGF-2 showed distinct morphological features similar apparent at certain times with neurons and glial cells and a significant proliferative activity in groups 2 and 4 throughout the days. Cells cultived only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200. On average, area and perimeter fo the group of cells positive for GFAP and the área of the cells immunostained for OX-42 were higher than those of the group 4. This study enabled the plasticity of mesenchymal cells (MCs) in neuronal and glial nineage and opened prospects for the search with cell therapy and transdifferentiation
Resumo:
The regeneration of bone defects with loss of substance remains as a therapeutic challenge in the medical field. There are basically four types of grafts: autologous, allogenic, xenogenic and isogenic. It is a consensus that autologous bone is the most suitable material for this purpose, but there are limitations to its use, especially the insufficient amount in the donor. Surveys show that the components of the extracellular matrix (ECM) are generally conserved between different species and are well tolerated even in xenogenic recipient. Thus, several studies have been conducted in the search for a replacement for autogenous bone scaffold using the technique of decellularization. To obtain these scaffolds, tissue must undergo a process of cell removal that causes minimal adverse effects on the composition, biological activity and mechanical integrity of the remaining extracellular matrix. There is not, however, a conformity among researchers about the best protocol for decellularization, since each of these treatments interfere differently in biochemical composition, ultrastructure and mechanical properties of the extracellular matrix, affecting the type of immune response to the material. Further down the arsenal of research involving decellularization bone tissue represents another obstacle to the arrival of a consensus protocol. The present study aimed to evaluate the influence of decellularization methods in the production of biological scaffolds from skeletal organs of mice, for their use for grafting. This was a laboratory study, sequenced in two distinct stages. In the first phase 12 mice hemi-calvariae were evaluated, divided into three groups (n = 4) and submitted to three different decellularization protocols (SDS [group I], trypsin [Group II], Triton X-100 [Group III]). We tried to identify the one that promotes most efficient cell removal, simultaneously to the best structural preservation of the bone extracellular matrix. Therefore, we performed quantitative analysis of the number of remaining cells and descriptive analysis of the scaffolds, made possible by microscopy. In the second stage, a study was conducted to evaluate the in vitro adhesion of mice bone marrow mesenchymal cells, cultured on these scaffolds, previously decellularized. Through manual counting of cells on scaffolds there was a complete cell removal in Group II, Group I showed a practically complete cell removal, and Group III displayed cell remains. The findings allowed us to observe a significant difference only between Groups II and III (p = 0.042). Better maintenance of the collagen structure was obtained with Triton X-100, whereas the decellularization with Trypsin was responsible for the major structural changes in the scaffolds. After culture, the adhesion of mesenchymal cells was only observed in specimens deccelularized with Trypsin. Due to the potential for total removal of cells and the ability to allow adherence of these, the protocol based on the use of Trypsin (Group II) was considered the most suitable for use in future experiments involving bone grafting decellularized scaffolds
Genotoxicity assessment of Garcinia achachairu Rusby (Clusiaceae) extract in mammalian cells in vivo
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)