900 resultados para Block Polymers
Resumo:
The sheep is a popular animal model for human biomechanical research involving invasive surgery on the hind limb. These painful procedures can only be ethically justified with the application of adequate analgesia protocols. Regional anaesthesia as an adjunct to general anaesthesia may markedly improve well-being of these experimental animals during the postoperative period due to a higher analgesic efficacy when compared with systemic drugs, and may therefore reduce stress and consequently the severity of such studies. As a first step 14 sheep cadavers were used to establish a new technique for the peripheral blockade of the sciatic and the femoral nerves under sonographic guidance and to evaluate the success rate by determination of the colorization of both nerves after an injection of 0.5 mL of a 0.1% methylene blue solution. First, both nerves were visualized sonographically. Then, methylene blue solution was injected and subsequently the length of colorization was measured by gross anatomical dissection of the target nerves. Twenty-four sciatic nerves were identified sonographically in 12 out of 13 cadavers. In one animal, the nerve could not be ascertained unequivocally and, consequently, nerve colorization failed. Twenty femoral nerves were located by ultrasound in 10 out of 13 cadavers. In three cadavers, signs of autolysis impeded the scan. This study provides a detailed anatomical description of the localization of the sciatic and the femoral nerves and presents an effective and safe yet simple and rapid technique for performing peripheral nerve blocks with a high success rate.
Resumo:
A 13-year-old male neutered domestic shorthaired cat had repeated syncopal episodes over a 6 month period, which had variable duration and continued to increase in frequency. Intermittent ventricular asystole, due to complete heart block, and hyperthyroidism were documented. As the syncopal episodes did not respond to a 4-week medical treatment and symptoms became severe, a transvenous ventricular demand pacemaker system (VVIM) was implanted via the external jugular vein. The unipolar lead was tunneled subcutaneously and connected with the generator in a preformed ventral abdominal muscle pocket. During follow up of 18-months there were no recurrences of the syncopal episodes.
Resumo:
Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).
Resumo:
Herein we demonstrate that a substitution type of the pyrene in short amphiphilic oligomers determines a morphology of the assemblies formed. Thus, 1.6- and 2.7-linkages lead to a formation of micrometer-sized 2D supromolecular polymers with a constant thickness 2 nm (pictures A and B). These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long nanometer thick helical supramolecular polymers (picturee C). These structures tend to form even more complex assemblies (bundles, superhelixes). Moreover, for all samples the polymerization process occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).
Resumo:
A 7-year-old male intact Rottweiler was presented with a 1-week history of lethargy, anorexia, vomiting and multiple syncopal events. The results of the clinical examination and electrocardiography were consistent with a third degree atrioventricular block and an intermittent accelerated idioventricular rhythm. Haematology, serum biochemistry, serology for Borrelia burgdorferi, blood culture, total T4, thoracic radiography and echocardiography did not reveal the cause of the arrhythmia. Response to medical treatment with isoproterenol was poor. Pacemaker placement was declined by the owners and the dog was euthanized at their request. Histopathological examination of the heart revealed a chemodectoma at the base of the heart. There was no neoplastic infiltration of the conduction tissue. Potential mechanisms explaining the association of the arrhythmias and the tumour, such as vagal stimulation and neuroendocrine factors are discussed.
Resumo:
Supramolecular assembly of π-conjugated systems is of large interested due to the possibility to use them in electronic devices.[1] Chrysene is a polyaromatic hydrocarbon which has been studied e.g for organic light-emitting diodes (OLEDs).[2] In continuation of our previous work involving the supramolecular polymerisation of pyrene oligomers [3] an oligomer consisting of three chrysenes linked by phophodiesters was synthesised (Chry3). UV-Vis measurements show that aggregates of Chry3 are formed in aqueous medium. This is illustrated by general hypochromicity, a change in vibronic band intensities and, in particular, the appearance of a red-shifted absorption band in the S0 → S2 transition. The data suggest the formation of J-aggregates. The formation of supramolecular polymers is further studied by temperature-dependent absorption- and fluorescence measurements, and by atomic force microscopy (AFM).
Resumo:
The efficient collection of solar energy relies on the design and construction of well-organized light-harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.
Resumo:
OBJECTIVE To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. STUDY DESIGN Prospective clinical trial. ANIMALS Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. METHODS Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. RESULTS The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. CONCLUSION AND CLINICAL RELEVANCE The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors.
Resumo:
This article describes the clinical applicability of a nerve stimulator–guided technique, previously described in dogs, to block the sciatic and the femoral nerves in 4 pet rabbits (Oryctolagus cuniculus) undergoing hind limb surgeries. Preanesthetic intramuscular doses of medetomidine (0.08 mg/kg), ketamine (15 mg/kg), and buprenorphine (0.03 mg/kg) were administered to the rabbit patients. The rabbits were intubated and general anesthesia was maintained using isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine at a volume of 0.05 mL/kg/nerve. Sciatic-femoral block was feasible in rabbits, and the motoric responses following electrical stimulation of both nerves were consistent with those reported in dogs after successful nerve location. Iatrogenic complications, namely nerve damage and local anesthetic toxicity, did not occur. Based on these results, the authors conclude that the sciatic-femoral nerve block described in dogs can be safely performed in rabbits. Clinical trials are required to assess the analgesic efficacy of the combined sciatic-femoral nerve block in rabbits as a part of multimodal pain management.
Resumo:
Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.
Resumo:
We introduce the block numerical range Wn(L) of an operator function L with respect to a decomposition H = H1⊕. . .⊕Hn of the underlying Hilbert space. Our main results include the spectral inclusion property and estimates of the norm of the resolvent for analytic L . They generalise, and improve, the corresponding results for the numerical range (which is the case n = 1) since the block numerical range is contained in, and may be much smaller than, the usual numerical range. We show that refinements of the decomposition entail inclusions between the corresponding block numerical ranges and that the block numerical range of the operator matrix function L contains those of its principal subminors. For the special case of operator polynomials, we investigate the boundedness of Wn(L) and we prove a Perron-Frobenius type result for the block numerical radius of monic operator polynomials with coefficients that are positive in Hilbert lattice sense.
Resumo:
New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O–H⋯O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20–300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner–Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner–Fisher approximation gave the following result for compound 2: g=2.18, J=–0.4 cm−1.