894 resultados para Bivalent transitions metals
Resumo:
In the past, mining wastes were left wherever they might lie in the surroundings of the mine area. Unfortunately, inactive and abandoned mines continue to pollute our environment, reason why these sites should be restored with minimum impact. Phytoextraction is an environmental-friendly and cost-effective technology less harmful than traditional methods that uses metal hyperaccumulator or at least tolerant plants to extract heavy metals from polluted soils. One disadvantage of hyperaccumulator species is their slow growth rate and low biomass production. Vetiveria zizanioides (L.) Nash, perennial species adapted to Mediterranean climate has a strong root system which can reach up to 3 m deep, is fast growing, and can survive in sites with high metal levels (Chen et al., 2004). Due to the fact that metals in abandoned mine tailings become strongly bonded to soil solids, humic acids used as chelating agents could increase metal bioavailability (Evangelou et al., 2004; Wilde et al., 2005) and thereby promote higher accumulation in the harvestable parts of the plant. The objective of this study was to examine the performance of humic acid assisted phytoextraction using Vetiveria zizanioides (L.) Nash in heavy metals contaminated soils.
Resumo:
Pseudo-total (i.e. aqua regia extractable) and gastric-bioaccessible (i.e. glycine + HCl extractable) concentrations of Ca, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined in a total of 48 samples collected from six community urban gardens of different characteristics in the city of Madrid (Spain). Calcium carbonate appears to be the soil property that determines the bioaccessibility of a majority of those elements, and the lack of influence of organic matter, pH and texture can be explained by their low levels in the samples (organic matter) or their narrow range of variation (pH and texture). A conservative risk assessment with bioaccessible concentrations in two scenarios, i.e. adult urban farmers and children playing in urban gardens, revealed acceptable levels of risk, but with large differences between urban gardens depending on their history of land use and their proximity to busy areas in the city center. Only in a worst-case scenario in which children who use urban gardens as recreational areas also eat the produce grown in them would the risk exceed the limits of acceptability
Resumo:
According to cognitive linguistics, language has an experiential origin based on perception, sensory motor activities and our knowledge of the world. Our thought operates by establishing similarities, links and associations that enable us to talk about one thing in terms of another as shown in the example of love as a journey (Lakoff and Johnson, 1980). Metaphor and metonymy are conceptual and linguistic tools that make possible most of these cognitive operations. Since metaphor is an essential element of human communication, the discourse of specialised disciplines includes metaphorical mappings and numerous examples of metaphorical expressions, for example in economics, where business is mapped in terms of war (White, 2004; Herrera & White, 2000), electrotechnics with electrical components understood as couples (Roldán- Riejos in preparation) or in civil engineering where a bridge is conceptualized as a person (Roldán-Riejos, 2013). In this paper, the metaphors: WORKING WITH METALS IS COOKING/ TRABAJAR CON METALES ES COCINAR and METALS ARE CULINARY OBJECTS/ LOS METALES SON OBJETOS CULINARIOS are explored. The main aim is to show that the cooking metaphor is widely spread in the metallurgical domain in English and Spanish, although with different nuances in each language due to socio-cultural factors. The method adopted consists of analysing examples taken from the: Bilingual Dictionary of Scientific and Technical Metaphors and Metonymies Spanish- English/English-Spanish, a forthcoming and rigorously documented bilingual dictionary that sums up research on conceptual, linguistic and visual metaphor and metonymy in different areas of engineering (Roldán-Riejos and Molina, 2013). The present paper studies in detail English and Spanish cross-linguistic correspondences related to types of metals and processes. It is suggested that they reflect synesthetic metaphoric mappings. The exploitation of cognitive conceptual metaphor in the ESP classroom is lastly recommended.
Resumo:
For analyzing the mechanism of energy transduction in the “motor” protein, myosin, it is opportune both to model the structural change in the hydrolytic transition, ATP (myosin-bound) + H2O → ADP⋅Pi (myosin-bound) and to check the plausibility of the model by appropriate site-directed mutations in the functional system. Here, we made a series of mutations to investigate the role of the salt-bridge between Glu-470 and Arg-247 (of chicken smooth muscle myosin) that has been inferred from crystallography to be a central feature of the transition [Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M., & Rayment, I. (1995) Biochemistry 34, 8960–8972]. Our results suggest that whether in the normal, or in the inverted, direction an intact salt-bridge is necessary for ATP hydrolysis, but when the salt-bridge is in the inverted direction it does not support actin activation. Normally, fluorescence changes result from adding nucleotides to myosin; these signals are reported by Trp-512 (of chicken smooth muscle myosin). Our results also suggest that structural impairments in the 470–247 region interfere with the transmission of these signals to the responsive Trp.
Resumo:
Fourier transform-infrared/statistics models demonstrate that the malignant transformation of morphologically normal human ovarian and breast tissues involves the creation of a high degree of structural modification (disorder) in DNA, before restoration of order in distant metastases. Order–disorder transitions were revealed by methods including principal components analysis of infrared spectra in which DNA samples were represented by points in two-dimensional space. Differences between the geometric sizes of clusters of points and between their locations revealed the magnitude of the order–disorder transitions. Infrared spectra provided evidence for the types of structural changes involved. Normal ovarian DNAs formed a tight cluster comparable to that of normal human blood leukocytes. The DNAs of ovarian primary carcinomas, including those that had given rise to metastases, had a high degree of disorder, whereas the DNAs of distant metastases from ovarian carcinomas were relatively ordered. However, the spectra of the metastases were more diverse than those of normal ovarian DNAs in regions assigned to base vibrations, implying increased genetic changes. DNAs of normal female breasts were substantially disordered (e.g., compared with the human blood leukocytes) as were those of the primary carcinomas, whether or not they had metastasized. The DNAs of distant breast cancer metastases were relatively ordered. These findings evoke a unified theory of carcinogenesis in which the creation of disorder in the DNA structure is an obligatory process followed by the selection of ordered, mutated DNA forms that ultimately give rise to metastases.
Resumo:
Recent experimental data on the conductivity σ+(T), T → 0, on the metallic side of the metal–insulator transition in ideally random (neutron transmutation-doped) 70Ge:Ga have shown that σ+(0) ∝ (N − Nc)μ with μ = ½, confirming earlier ultra-low-temperature results for Si:P. This value is inconsistent with theoretical predictions based on diffusive classical scaling models, but it can be understood by a quantum-directed percolative filamentary amplitude model in which electronic basis states exist which have a well-defined momentum parallel but not normal to the applied electric field. The model, which is based on a new kind of broken symmetry, also explains the anomalous sign reversal of the derivative of the temperature dependence in the critical regime.
Resumo:
The threshold behavior of the transport properties of a random metal in the critical region near a metal–insulator transition is strongly affected by the measuring electromagnetic fields. In spite of the randomness, the electrical conductivity exhibits striking phase-coherent effects due to broken symmetry, which greatly sharpen the transition compared with the predictions of effective medium theories, as previously explained for electrical conductivities. Here broken symmetry explains the sign reversal of the T → 0 magnetoconductance of the metal–insulator transition in Si(B,P), also previously not understood by effective medium theories. Finally, the symmetry-breaking features of quantum percolation theory explain the unexpectedly very small electrical conductivity temperature exponent α = 0.22(2) recently observed in Ni(S,Se)2 alloys at the antiferromagnetic metal–insulator transition below T = 0.8 K.
Resumo:
Differential rates of nucleotide substitutions among taxa are a common observation in molecular phylogenetic studies, yet links between rates of DNA evolution and traits or behaviors of organisms have proved elusive. Likelihood ratio testing is used here for the first time to evaluate specific hypotheses that account for the induction of shifts in rates of DNA evolution. A molecular phylogenetic investigation of mutualist (lichen-forming fungi and fungi associated with liverworts) and nonmutualist fungi revealed four independent transitions to mutualism. We demonstrate a highly significant association between mutualism and increased rates of nucleotide substitutions in nuclear ribosomal DNA, and we demonstrate that a transition to mutualism preceded the rate acceleration of nuclear ribosomal DNA in these lineages. Our results suggest that the increased rate of evolution after the adoption of a mutualist lifestyle is generalized across the genome of these mutualist fungi.
Resumo:
Amino acid substitutions widely distributed throughout the influenza hemagglutinin (HA) influence the pH of its membrane fusion activity. We have combined a number of these substitutions in double mutants and determined the effects on the pH of fusion and on the pH at which the refolding of HA required for fusion occurs. By analyzing combinations of mutations in three regions of the metastable neutral-pH HA that are rearranged at fusion pH we obtain evidence for both additive and nonadditive effects and for an apparent order of dominance in the effects of amino acid substitutions in particular regions on the pH of fusion. We conclude that there are at least three components in the structural transition required for membrane fusion activity and consider possible pathways for the transition in relation to the known differences between neutral and fusion pH HA structures.
Resumo:
The MDR1 P-glycoprotein (Pgp), a member of the ATP-binding cassette family of transporters, is a transmembrane ATPase efflux pump for various lipophilic compounds, including many anti-cancer drugs. mAb UIC2, reactive with the extracellular moiety of Pgp, inhibits Pgp-mediated efflux. UIC2 reactivity with Pgp was increased by the addition of several Pgp-transported compounds or ATP-depleting agents, and by mutational inactivation of both nucleotide-binding domains (NBDs) of Pgp. UIC2 binding to Pgp mutated in both NBDs was unaffected in the presence of Pgp transport substrates or in ATP-depleted cells, whereas the reactivities of the wild-type Pgp and Pgps mutated in a single NBD were increased by these treatments to the level of the double mutant. These results indicate the existence of different Pgp conformations associated with different stages of transport-associated ATP hydrolysis and suggest trapping in a transient conformation as a mechanism for antibody-mediated inhibition of Pgp.
Resumo:
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.
Resumo:
We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for ∼10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.
Resumo:
A transition as a function of increasing temperature from harmonic to anharmonic dynamics has been observed in globular proteins by using spectroscopic, scattering, and computer simulation techniques. We present here results of a dynamic neutron scattering analysis of the solvent dependence of the picosecond-time scale dynamic transition behavior of solutions of a simple single-subunit enzyme, xylanase. The protein is examined in powder form, in D2O, and in four two-component perdeuterated single-phase cryosolvents in which it is active and stable. The scattering profiles of the mixed solvent systems in the absence of protein are also determined. The general features of the dynamic transition behavior of the protein solutions follow those of the solvents. The dynamic transition in all of the mixed cryosolvent–protein systems is much more gradual than in pure D2O, consistent with a distribution of energy barriers. The differences between the dynamic behaviors of the various cryosolvent protein solutions themselves are remarkably small. The results are consistent with a picture in which the picosecond-time scale atomic dynamics respond strongly to melting of pure water solvent but are relatively invariant in cryosolvents of differing compositions and melting points.
Resumo:
Metallothioneins (MT) are involved in the scavenging of the toxic heavy metals and protection of cells from reactive oxygen intermediates. To investigate the potential role of the protein Ku in the expression of MT, we measured the level of MT-I mRNA in the parental rat fibroblast cell line (Rat 1) and the cell lines that stably and constitutively overexpress the small subunit, the large subunit, and the heterodimer of Ku. Treatment with CdS04 or ZnS04 elevated the MT-I mRNA level 20- to 30-fold in the parental cells and the cells (Ku-70) that overproduce the small subunit or those (Ku-7080) overexpressing the heterodimer. By contrast, the cells (Ku-80) overexpressing the large subunit of Ku failed to induce MT-I. In vitro transcription assay showed that the MT-I promoter activity was suppressed selectively in the nuclear extracts from Ku-80 cells. The specificity of the repressor function was shown by the induction of hsp 70, another Cd-inducible gene, in Ku-80 cells. Addition of the nuclear extract from Ku-80 cells at the start of the transcription reaction abolished the MT-l promoter activity in the Rat 1 cell extract. The transcript once formed in Rat 1 nuclear extract was not degraded by further incubation with the extract from Ku-80 cells. The repressor was sensitive to heat. The DNA-binding activities of at least four transcription factors that control the MT-I promoter activity were not affected in Ku-80 cells. These observations have set the stage for further exploration of the mechanisms by which the Ku subunit mediates suppression of MT induction.
Resumo:
Human history is punctuated by periods of rapid cultural change. Although archeologists have developed a range of models to describe cultural transitions, in most real examples we do not know whether the processes involved the movement of people or the movement of culture only. With a series of relatively well defined cultural transitions, the British Isles present an ideal opportunity to assess the demographic context of cultural change. Important transitions after the first Paleolithic settlements include the Neolithic, the development of Iron Age cultures, and various historical invasions from continental Europe. Here we show that patterns of Y-chromosome variation indicate that the Neolithic and Iron Age transitions in the British Isles occurred without large-scale male movements. The more recent invasions from Scandinavia, on the other hand, appear to have left a significant paternal genetic legacy. In contrast, patterns of mtDNA and X-chromosome variation indicate that one or more of these pre-Anglo-Saxon cultural revolutions had a major effect on the maternal genetic heritage of the British Isles.