996 resultados para Biological radiation effects
Resumo:
Soybean agglutinin (SBA) lectin, a protein present in raw soybean meals, can bind to and be extensively endocytosed by intestinal epithelial cells, being nutritionally toxic for most animals. In the present study we show that SBA (5-200 µg/cavity) injected into different cavities of rats induced a typical inflammatory response characterized by dose-dependent exudation and neutrophil migration 4 h after injection. This effect was blocked by pretreatment with glucocorticoid (0.5 mg/kg) or by co-injection of N-acetyl-galactosamine (100 x [M] lectin), but not of other sugars (100 x [M] lectin), suggesting an inflammatory response related to the lectin activity. Neutrophil accumulation was not dependent on a direct effect of SBA on the macrophage population since the effect was not altered when the number of peritoneal cells was increased or decreased in vivo. On the other hand, SBA showed chemotactic activity for human neutrophils in vitro. A slight increase in mononuclear cells was observed 48 h after ip injection of SBA. Phenotypic analysis of these cells showed an increase in the CD4+/CD8- lymphocyte population that returned to control levels after 15 days, suggesting the development of an immune response. SBA-stimulated macrophages presented an increase in the expression of CD11/CD18 surface molecules and showed some characteristics of activated cells. After intravenous administration, SBA increased the number of circulating neutrophils and inhibited in a dose-dependent manner the neutrophil migration induced by ip injection of carrageenan into peritoneal cavities. The co-injection of N-acetyl-galactosamine or mannose, but not glucose or fucose, inhibited these effects. The data indicate that soybean lectin is able to induce a local inflammatory reaction but has an anti-inflammatory effect when present in circulating blood
Resumo:
The effects of postnatal amitraz exposure on physical and behavioral parameters were studied in Wistar rats, whose lactating dams received the pesticide (10 mg/kg) orally on days 1, 4, 7, 10, 13, 16 and 19 of lactation; control dams received distilled water (1 ml/kg) on the same days. A total of 18 different litters (9 of them control and 9 experimental) born after a 21-day gestation were used. The results showed that the median effective time (ET50) for fur development, eye opening, testis descent and onset of the startle response were increased in rats postnatally exposed to amitraz (2.7, 15.1, 21.6 and 15.3 days, respectively) compared to those of the control pups (1.8, 14.0, 19.9 and 12.9 days, respectively). The ages of incisor eruption, total unfolding of the external ears, vaginal and ear opening and the time taken to perform the grasping hindlimb reflex were not affected by amitraz exposure. Pups from dams treated with amitraz during lactation took more time (in seconds) to perform the surface righting reflex on postnatal days (PND) 3 (25.0 ± 2.0), 4 (12.3 ± 1.2) and 5 (8.7 ± 0.9) in relation to controls (10.6 ± 1.2; 4.5 ± 0.6 and 3.4 ± 0.4, respectively); the climbing response was not changed by amitraz. Postnatal amitraz exposure increased spontaneous motor activity of male and female pups in the open-field on PND 16 (140 ± 11) and 17 (124 ± 12), and 16 (104 ± 9), 17 (137 ± 9) and 18 (106 ± 8), respectively. Data on spontaneous motor activity of the control male and female pups were 59 ± 11 and 69 ± 10 for days 16 and 17 and 49 ± 9, 48 ± 7 and 56 ± 7 for days 16, 17 and 18, respectively. Some qualitative differences were also observed in spontaneous motor behavior; thus, raising the head, shoulder and pelvis matured one or two days later in the amitraz-treated offspring. Postnatal amitraz exposure did not change locomotion and rearing frequencies or immobility time in the open-field on PND 30, 60 and 90. The present findings indicate that postnatal exposure to amitraz caused transient developmental and behavioral changes in the exposed offspring and suggest that further investigation of the potential health risk of amitraz exposure to developing human and animal offsprings may be warranted.
Resumo:
We studied the basal and thyrotropin-releasing hormone (TRH) (50 nM) induced thyrotropin (TSH) release in isolated hemipituitaries of ovariectomized rats treated with near-physiological or high doses of 17-ß-estradiol benzoate (EB; sc, daily for 10 days) or with vehicle (untreated control rats, OVX). One group was sham-operated (normal control). The anterior pituitary glands were incubated in Krebs-Ringer bicarbonate medium, pH 7.4, at 37oC in an atmosphere of 95% O2/5% CO2. Medium and pituitary TSH was measured by specific RIA (NIDDK-RP-3). Ovariectomy induced a decrease (P<0.05) in basal TSH release (normal control = 44.1 ± 7.2; OVX = 14.7 ± 3.0 ng/ml) and tended to reduce TRH-stimulated TSH release (normal control = 33.0 ± 8.1; OVX = 16.6 ± 2.4 ng/ml). The lowest dose of EB (0.7 µg/100 g body weight) did not reverse this alteration, but markedly increased the pituitary TSH content (0.6 ± 0.06 µg/hemipituitary; P<0.05) above that of OVX (0.4 ± 0.03 µg/hemipituitary) and normal rats (0.46 ± 0.03 µg/hemipituitary). The intermediate EB dose (1.4 µg/100 g body weight) induced a nonsignificant tendency to a higher TSH response to TRH compared to OVX and a lower response compared to normal rats. Conversely, in the rats treated with the highest dose (14 µg/100 g body weight), serum 17-ß-estradiol was 17 times higher than normal, and the basal and TRH-stimulated TSH release, as well as the pituitary TSH content, was significantly (P<0.05) reduced compared to normal rats and tended to be even lower than the values observed for the vehicle-treated OVX group, suggesting an inhibitory effect of hyperestrogenism. In conclusion, while reinforcing the concept of a positive physiological regulatory role of estradiol on the TSH response to TRH and on the pituitary stores of the hormone, the present results suggest an inhibitory effect of high levels of estrogen on these responses
Resumo:
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer ß-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 µM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for ß-amyloid 1-40 peptide (Km = 5 µM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid ß-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.
Resumo:
Stress is a well-known entity and may be defined as a threat to the homeostasis of a being. In the present study, we evaluated the effects of acupuncture on the physiological responses induced by restraint stress. Acupuncture is an ancient therapeutic technique which is used in the treatment and prevention of diseases. Its proposed mechanisms of action are based on the principle of homeostasis. Adult male Wistar EPM-1 rats were divided into four groups: group I (N = 12), unrestrained rats with cannulas previously implanted into their femoral arteries for blood pressure and heart rate measurements; group II (N = 12), rats that were also cannulated and were submitted to 60-min immobilization; group III (N = 12), same as group II but with acupuncture needles implanted at points SP6, S36, REN17, P6 and DU20 during the immobilization period; group IV (N = 14), same as group III but with needles implanted at points not related to acupuncture (non-acupoints). During the 60-min immobilization period animals were assessed for stress-related behaviors, heart rate, blood pressure and plasma corticosterone, noradrenaline and adrenaline levels. Group III animals showed a significant reduction (60% on average, P<0.02) in restraint-induced behaviors when compared to groups II and IV. Data from cardiovascular and hormonal assessments indicated no differences between group III and group II and IV animals, but tended to be lower (50% reduction on average) in group I animals. We hypothesize that acupuncture at points SP6, S36, REN17, P6 and DU20 has an anxiolytic effect on restraint-induced stress that is not due to a sedative action
Resumo:
There is little information on the possible effects of estrogen on the activity of 5'-deiodinase (5'-ID), an enzyme responsible for the generation of T3, the biologically active thyroid hormone. In the present study, anterior pituitary sonicates or hepatic and thyroid microsomes from ovariectomized (OVX) rats treated or not with estradiol benzoate (EB, 0.7 or 14 µg/100 g body weight, sc, for 10 days) were assayed for type I 5'-ID (5'-ID-I) and type II 5'-ID (5'-ID-II, only in pituitary) activities. The 5'-ID activity was evaluated by the release of 125I from deiodinated 125I rT3, using specific assay conditions for type I or type II. Serum TSH and free T3 and free T4 were measured by radioimmunoassay. OVX alone induced a reduction in pituitary 5'-ID-I (control = 723.7 ± 67.9 vs OVX = 413.9 ± 26.9; P<0.05), while the EB-treated OVX group showed activity similar to that of the normal group. Thyroid 5'-ID-I showed the same pattern of changes, but these changes were not statistically significant. Pituitary and hepatic 5'-ID-II did not show major alterations. The treatment with the higher EB dose (14 µg), contrary to the results obtained with the lower dose, had no effect on the reduced pituitary 5'-ID-I of OVX rats. However, it induced an important increment of 5'-ID-I in the thyroid gland (0.8 times higher than that of the normal group: control = 131.9 ± 23.7 vs ovx + EB 14 µg = 248.0 ± 31.2; P<0.05), which is associated with increased serum TSH (0.6-fold vs OVX, P<0.05) but normal serum free T3 and free T4. The data suggest that estrogen is a physiological stimulator of anterior pituitary 5'-ID-I and a potent stimulator of the thyroid enzyme when employed at high doses
Resumo:
The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colliculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance paradigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 ± 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 ± 0.60 s and 8.63 ± 0.93 s for latencies and 12.5 ± 2.04 and 19.62 ± 1.65 for frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 ± 1.63 and 12.75 ± 1.44 s) or frequencies of responses (8.75 ± 1.20 and 11.25 ± 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala
Resumo:
1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.
Resumo:
It has been suggested that there are no gender effects on esophageal motility. However, in previous studies the subjects did not perform multiple swallows and the quantitative features of esophageal contractions were not evaluated. In order to investigate the gender effects on esophageal motility we studied 40 healthy normal volunteers, 20 men aged 37 ± 15 years (mean ± SD), and 20 women aged 38 ± 14 years. We used the manometric method with an eight-lumen polyvinyl catheter and continuous perfusion. The upper and lower esophageal sphincter pressures were measured by the rapid pull-through method. With the catheter positioned with one lumen opening in the lower esophageal sphincter, and the others at 5, 10 and 15 cm above the sphincter, ten swallows of a 5-ml water bolus alternated with ten dry swallows were performed. Statistical analysis was done by the Student t-test and Mann-Whitney test. Gender differences (P<0.05) were observed for wet swallows in the duration of contractions 5 cm above the lower esophageal sphincter (men: 3.7 ± 0.2 s, women: 4.5 ± 0.3 s, mean ± SEM), and in the velocity of contractions from 15 to 10 cm above the lower esophageal sphincter (men: 4.7 ± 0.3 cm/s, women: 3.5 ± 0.2 cm/s). There was no difference (P>0.05) in sphincter pressure, duration and percentage of complete lower esophageal sphincter relaxation, amplitude of contractions, or in the number of failed, multipeaked and synchronous contractions. We conclude that gender may cause some differences in esophageal motility which, though of no clinical significance, should be taken into consideration when interpreting esophageal motility tests.
Resumo:
Post-training intracerebroventricular administration of procaine (20 µg/µl) and dimethocaine (10 or 20 µg/µl), local anesthetics of the ester class, prolonged the latency (s) in the retention test of male and female 3-month-old Swiss albino mice (25-35 g body weight; N = 140) in the elevated plus-maze (mean ± SEM for 10 male mice: control = 41.2 ± 8.1; procaine = 78.5 ± 10.3; 10 µg/µl dimethocaine = 58.7 ± 12.3; 20 µg/µl dimethocaine = 109.6 ± 5.73; for 10 female mice: control = 34.8 ± 5.8; procaine = 55.3 ± 13.4; 10 µg/µl dimethocaine = 59.9 ± 12.3 and 20 µg/µl dimethocaine = 61.3 ± 11.1). However, lidocaine (10 or 20 µg/µl), an amide class type of local anesthetic, failed to influence this parameter. Local anesthetics at the dose range used did not affect the motor coordination of mice exposed to the rota-rod test. These results suggest that procaine and dimethocaine impair some memory process(es) in the plus-maze test. These findings are interpreted in terms of non-anesthetic mechanisms of action of these drugs on memory impairment and also confirm the validity of the elevated plus-maze for the evaluation of drugs affecting learning and memory in mice
Resumo:
Controversy still exists concerning the potential ergogenic benefit of caffeine (CAF) for exercise performance. The purpose of this study was to compare the effects of CAF ingestion on endurance performance during exercise on a bicycle ergometer at two different intensities, i.e., approximately 10% below and 10% above the anaerobic threshold (AT). Eight untrained males, non-regular consumers of CAF, participated in this study. AT, defined as the intensity (watts) corresponding to a lactate concentration of 4 mM, was determined during an incremental exercise test from rest to exhaustion on an electrically braked cycle ergometer. On the basis of these measurements, the subjects were asked to cycle until exhaustion at two different intensities, i.e., approximately 10% below and 10% above AT. Each intensity was performed twice in a double-blind randomized order by ingesting either CAF (5 mg/kg) or a placebo (PLA) 60 min prior to the test. Venous blood was analyzed for free fatty acid, glucose, and lactate, before, during, and immediately after exercise. Rating of perceived exertion and time to exhaustion were also measured during each trial. There were no differences in free fatty acids or lactate levels between CAF and PLA during and immediately after exercise for either intensity. Immediately after exercise glucose increased in the CAF trial at both intensities. Rating of perceived exertion was significantly lower (CAF = 14.1 ± 2.5 vs PLA = 16.6 ± 2.4) and time to exhaustion was significantly higher (CAF = 46.54 ± 8.05 min vs PLA = 32.42 ± 14.81 min) during exercise below AT with CAF. However, there was no effect of CAF treatment on rating of perceived exertion (CAF = 18.0 ± 2.7 vs PLA = 17.6 ± 2.3) and time to exhaustion (CAF = 18.45 ± 7.28 min vs PLA = 19.17 ± 4.37 min) during exercise above AT. We conclude that in untrained subjects caffeine can improve endurance performance during prolonged exercise performed below AT and that the decrease of perceived exertion can be involved in this process
Resumo:
Cardiac hypertrophy that accompanies hypertension seems to be a phenomenon of multifactorial origin whose development does not seem to depend on an increased pressure load alone, but also on local growth factors and cardioadrenergic activity. The aim of the present study was to determine if sympathetic renal denervation and its effects on arterial pressure level can prevent cardiac hypertrophy and if it can also delay the onset and attenuate the severity of deoxycorticosterone acetate (DOCA)-salt hypertension. DOCA-salt treatment was initiated in rats seven days after uninephrectomy and contralateral renal denervation or sham renal denervation. DOCA (15 mg/kg, sc) or vehicle (soybean oil, 0.25 ml per animal) was administered twice a week for two weeks. Rats treated with DOCA or vehicle (control) were provided drinking water containing 1% NaCl and 0.03% KCl. At the end of the treatment period, mean arterial pressure (MAP) and heart rate measurements were made in conscious animals. Under ether anesthesia, the heart was removed and the right and left ventricles (including the septum) were separated and weighed. DOCA-salt treatment produced a significant increase in left ventricular weight/body weight (LVW/BW) ratio (2.44 ± 0.09 mg/g) and right ventricular weight/body weight (RVW/BW) ratio (0.53 ± 0.01 mg/g) compared to control (1.92 ± 0.04 and 0.48 ± 0.01 mg/g, respectively) rats. MAP was significantly higher (39%) in DOCA-salt rats. Renal denervation prevented (P>0.05) the development of hypertension in DOCA-salt rats but did not prevent the increase in LVW/BW (2.27 ± 0.03 mg/g) and RVW/BW (0.52 ± 0.01 mg/g). We have shown that the increase in arterial pressure level is not responsible for cardiac hypertrophy, which may be more related to other events associated with DOCA-salt hypertension, such as an increase in cardiac sympathetic activity
Resumo:
The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms) have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.
Resumo:
The aim of this study was to investigate the possible interactions between the nociceptive system, the sympathetic system and the inflammatory process. Thus, the superior cervical ganglion of rats was submitted to chronic inflammation and Fos expression was used as a marker for neuronal activity throughout central neurons following painful peripheral stimulation. The painful stimulus consisted of subcutaneously injected formalin applied to the supra-ocular region. Fos-positive neurons were identified by conventional immunohistochemical techniques, and analyzed from the obex through the cervical levels of the spinal cord. In the caudal sub-nucleus of the spinal trigeminal nuclear complex, the number of Fos-positive neurons was much higher in rats with inflammation of the superior cervical ganglion than in control rats, either sham-operated or with saline applied to the ganglion. There was a highly significant difference in the density of Fos-positive neurons between the inflamed and control groups. No significant difference was found between control groups. These results suggest that the inflammation of the superior cervical ganglion generated an increased responsiveness to painful stimuli, which may have been due to a diminished sympathetic influence upon the sensory peripheral innervation.
Resumo:
Gastrointestinal surgical procedures have the potential to disrupt motor activity in various organs of the gastrointestinal tract or, indeed, throughout the entire alimentary canal. Several of these motor effects have important clinical consequences and have also served to advance our understanding of the regulation of gastrointestinal motor activity. This review will focus, in particular, on the effects of surgery on the small intestine, and will attempt to emphasize the implications of these studies for our understanding of small intestinal motility, in general.