893 resultados para Biogeography, Bioregions, Subregion, Statistical Modelling, GIS, Finite Mixture Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mantle convection models it has become common to make use of a modified (pressure sensitive, Boussinesq) von Mises yield criterion to limit the maximum stress the lithosphere can support. This approach allows the viscous, cool thermal boundary layer to deform in a relatively plate-like mode even in a fully Eulerian representation. In large-scale models with embedded continental crust where the mobile boundary layer represents the oceanic lithosphere, the von Mises yield criterion for the oceans ensures that the continents experience a realistic broad-scale stress regime. In detailed models of crustal deformation it is, however, more appropriate to choose a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on whichever one of many randomly oriented planes happens to be favorably oriented with respect to the stress field. As coupled crust/mantle models become more sophisticated it is important to be able to use whichever failure model is appropriate to a given part of the system. We have therefore developed a way to represent Mohr-Coulomb failure within a code which is suited to mantle convection problems coupled to large-scale crustal deformation. Our approach uses an orthotropic viscous rheology (a different viscosity for pure shear to that for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation - neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane which is formally equivalent in any symmetric formulation. It is also important to allow strain-weakening of the material. The material should remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-Integration-point finite element code and will show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion, and comparisons between mantle convection models using the von Mises versus the Mohr-Coulomb yield criteria. The formulation itself is general and applies to 2D and 3D problems, although it is somewhat more complicated to identify the slip plane in 3D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis concerns mixed flows (which are characterized by the simultaneous occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under bridges), and contributes to the improvement of the existing numerical tools for modelling these phenomena. The classic Preissmann slot approach is selected due to its simplicity and capability of predicting results comparable to those of a more recent and complex two-equation model, as shown here with reference to a laboratory test case. In order to enhance the computational efficiency, a local time stepping strategy is implemented in a shock-capturing Godunov-type finite volume numerical scheme for the integration of the de Saint-Venant equations. The results of different numerical tests show that local time stepping reduces run time significantly (between −29% and −85% CPU time for the test cases considered) compared to the conventional global time stepping, especially when only a small region of the flow field is surcharged, while solution accuracy and mass conservation are not impaired. The second part of this thesis is devoted to the modelling of the hydraulic effects of potentially pressurized structures, such as bridges and culverts, inserted in open channel domains. To this aim, a two-dimensional mixed flow model is developed first. The classic conservative formulation of the 2D shallow water equations for free-surface flow is adapted by assuming that two fictitious vertical slots, normally intersecting, are added on the ceiling of each integration element. Numerical results show that this schematization is suitable for the prediction of 2D flooding phenomena in which the pressurization of crossing structures can be expected. Given that the Preissmann model does not allow for the possibility of bridge overtopping, a one-dimensional model is also presented in this thesis to handle this particular condition. The flows below and above the deck are considered as parallel, and linked to the upstream and downstream reaches of the channel by introducing suitable internal boundary conditions. The comparison with experimental data and with the results of HEC-RAS simulations shows that the proposed model can be a useful and effective tool for predicting overtopping and backwater effects induced by the presence of bridges and culverts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixture Density Networks (MDNs) are a well-established method for modelling the conditional probability density which is useful for complex multi-valued functions where regression methods (such as MLPs) fail. In this paper we extend earlier research of a regularisation method for a special case of MDNs to the general case using evidence based regularisation and we show how the Hessian of the MDN error function can be evaluated using R-propagation. The method is tested on two data sets and compared with early stopping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conventional neural network approach to regression problems approximates the conditional mean of the output vector. For mappings which are multi-valued this approach breaks down, since the average of two solutions is not necessarily a valid solution. In this article mixture density networks, a principled method to model conditional probability density functions, are applied to retrieving Cartesian wind vector components from satellite scatterometer data. A hybrid mixture density network is implemented to incorporate prior knowledge of the predominantly bimodal function branches. An advantage of a fully probabilistic model is that more sophisticated and principled methods can be used to resolve ambiguities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixture Density Networks are a principled method to model conditional probability density functions which are non-Gaussian. This is achieved by modelling the conditional distribution for each pattern with a Gaussian Mixture Model for which the parameters are generated by a neural network. This thesis presents a novel method to introduce regularisation in this context for the special case where the mean and variance of the spherical Gaussian Kernels in the mixtures are fixed to predetermined values. Guidelines for how these parameters can be initialised are given, and it is shown how to apply the evidence framework to mixture density networks to achieve regularisation. This also provides an objective stopping criteria that can replace the `early stopping' methods that have previously been used. If the neural network used is an RBF network with fixed centres this opens up new opportunities for improved initialisation of the network weights, which are exploited to start training relatively close to the optimum. The new method is demonstrated on two data sets. The first is a simple synthetic data set while the second is a real life data set, namely satellite scatterometer data used to infer the wind speed and wind direction near the ocean surface. For both data sets the regularisation method performs well in comparison with earlier published results. Ideas on how the constraint on the kernels may be relaxed to allow fully adaptable kernels are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the performance of parity check codes using the mapping onto spin glasses proposed by Sourlas. We study codes where each parity check comprises products of K bits selected from the original digital message with exactly C parity checks per message bit. We show, using the replica method, that these codes saturate Shannon's coding bound for K?8 when the code rate K/C is finite. We then examine the finite temperature case to asses the use of simulated annealing methods for decoding, study the performance of the finite K case and extend the analysis to accommodate different types of noisy channels. The analogy between statistical physics methods and decoding by belief propagation is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variation of low-density parity check (LDPC) error-correcting codes defined over Galois fields (GF(q)) is investigated using statistical physics. A code of this type is characterised by a sparse random parity check matrix composed of C non-zero elements per column. We examine the dependence of the code performance on the value of q, for finite and infinite C values, both in terms of the thermodynamical transition point and the practical decoding phase characterised by the existence of a unique (ferromagnetic) solution. We find different q-dependence in the cases of C = 2 and C ≥ 3; the analytical solutions are in agreement with simulation results, providing a quantitative measure to the improvement in performance obtained using non-binary alphabets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conventional neural network approach to regression problems approximates the conditional mean of the output vector. For mappings which are multi-valued this approach breaks down, since the average of two solutions is not necessarily a valid solution. In this article mixture density networks, a principled method to model conditional probability density functions, are applied to retrieving Cartesian wind vector components from satellite scatterometer data. A hybrid mixture density network is implemented to incorporate prior knowledge of the predominantly bimodal function branches. An advantage of a fully probabilistic model is that more sophisticated and principled methods can be used to resolve ambiguities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixture Density Networks are a principled method to model conditional probability density functions which are non-Gaussian. This is achieved by modelling the conditional distribution for each pattern with a Gaussian Mixture Model for which the parameters are generated by a neural network. This thesis presents a novel method to introduce regularisation in this context for the special case where the mean and variance of the spherical Gaussian Kernels in the mixtures are fixed to predetermined values. Guidelines for how these parameters can be initialised are given, and it is shown how to apply the evidence framework to mixture density networks to achieve regularisation. This also provides an objective stopping criteria that can replace the `early stopping' methods that have previously been used. If the neural network used is an RBF network with fixed centres this opens up new opportunities for improved initialisation of the network weights, which are exploited to start training relatively close to the optimum. The new method is demonstrated on two data sets. The first is a simple synthetic data set while the second is a real life data set, namely satellite scatterometer data used to infer the wind speed and wind direction near the ocean surface. For both data sets the regularisation method performs well in comparison with earlier published results. Ideas on how the constraint on the kernels may be relaxed to allow fully adaptable kernels are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overlaying maps using a desktop GIS is often the first step of a multivariate spatial analysis. The potential of this operation has increased considerably as data sources and Web services to manipulate them are becoming widely available via the Internet. Standards from the OGC enable such geospatial mashups to be seamless and user driven, involving discovery of thematic data. The user is naturally inclined to look for spatial clusters and correlation of outcomes. Using classical cluster detection scan methods to identify multivariate associations can be problematic in this context, because of a lack of control on or knowledge about background populations. For public health and epidemiological mapping, this limiting factor can be critical but often the focus is on spatial identification of risk factors associated with health or clinical status. Spatial entropy index HSu for the ScankOO analysis of the hypothetical dataset using a vicinity which is fixed by the number of points without distinction between their labels. (The size of the labels is proportional to the inverse of the index) In this article we point out that this association itself can ensure some control on underlying populations, and develop an exploratory scan statistic framework for multivariate associations. Inference using statistical map methodologies can be used to test the clustered associations. The approach is illustrated with a hypothetical data example and an epidemiological study on community MRSA. Scenarios of potential use for online mashups are introduced but full implementation is left for further research.