994 resultados para Biochemical genetics (isozyme electrophoresis )


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Associating genetic variation with quantitative measures of gene regulation offers a way to bridge the gap between genotype and complex phenotypes. In order to identify quantitative trait loci (QTLs) that influence the binding of a transcription factor in humans, we measured binding of the multifunctional transcription and chromatin factor CTCF in 51 HapMap cell lines. We identified thousands of QTLs in which genotype differences were associated with differences in CTCF binding strength, hundreds of them confirmed by directly observable allele-specific binding bias. The majority of QTLs were either within 1 kb of the CTCF binding motif, or in linkage disequilibrium with a variant within 1 kb of the motif. On the X chromosome we observed three classes of binding sites: a minority class bound only to the active copy of the X chromosome, the majority class bound to both the active and inactive X, and a small set of female-specific CTCF sites associated with two non-coding RNA genes. In sum, our data reveal extensive genetic effects on CTCF binding, both direct and indirect, and identify a diversity of patterns of CTCF binding on the X chromosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emiliania huxleyi (Lohm.) Hay and Mohler is a ubiquitous unicellular marine alga surrounded by an elaborate covering of calcite platelets called coccoliths. It is an important primary producer involved in oceanic biogeochemistry and climate regulation. Currently, E. huxleyi is separated into five morphotypes based on morphometric, physiological, biochemical, and immunological differences. However, a genetic marker has yet to be found to characterize these morphotypes. With the use of sequence analysis and denaturing gradient gel electrophoresis, we discovered a genetic marker that correlates significantly with the separation of the most widely recognized A and B morphotypes. Furthermore, we reveal that the A morphotype is composed of a number of distinct genotypes. This marker lies within the 3' untranslated region of a coccolith associated protein mRNA, which is implicated in regulating coccolith calcification. Consequently, we tentatively termed this marker the coccolith morphology motif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems of relating the results of experiments in the laboratory to events in nature are twofold: to equate the response to a single variable (hydrocarbons) with the natural variability in the biological material in a multivariate environment, and to consider whether the response established experimentally has any relevance to the animal's chances of survival and reproduction (i.e. its fitness) in the natural population. Recent studies of the effects of petroleum hydrocarbons on marine invertebrates are reviewed, with an emphasis on the physiological and cytochemical responses by bivalve molluscs. The dose-response relations that emerge suggest the intensity of the 'signal' that must be detected in nature if the chronic, sublethal effects of petroleum pollution are to be measured. The natural variability in these physiological and cytochemical processes are then reviewed and the main causes of variability in natural populations, both endogenous and exogenous, discussed. These results indicate the extent of the `noise' above which the signal from possible pollution effects must be detected. The results from recent field studies on the common mussel, Mytilus edulis, are discussed. The results are as complex as expected, but it proves possible to reduce the variance in the measured responses so that pollution effects, including those due to hydrocarbons, can be detected. The ecological consequences of the observed effects of petroleum hydrocarbons are then discussed in terms of reproductive effort and reproductive value. Considerable variation between populations exists here also and this can be used to help in the interpretation of the extent of the impact of the environment on the ecology of the population. The result is to place the findings of the laboratory experiments in an ecological context of natural variability and of the physiological costs of adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Aerial rate of oxygen consumption by Mytilus edulis and M. galloprovincialis is 4â17% of the aquatic rate. 2. For Cardium edule and Modiolus demissus the aerial rate of oxygen uptake is between 28 and 78% of the aquatic rate. 3. These species differences are related to the degree of shell gape during air exposure. 4. All species show an apparent oxygen debt after exposure to air, the extent of which is not simply related to either the level of aerobic respiration or the degree of anaerobiosis during exposure. 5. Anaerobic end-products accumulate in the tissues of Mytilus during aerial exposure, but not in Cardium. 6. The relative energy yields by aerobic and anaerobic means in M. edulis are discussed.