928 resultados para Bayesian forecasts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inverse controller is traditionally assumed to be a deterministic function. This paper presents a pedagogical methodology for estimating the stochastic model of the inverse controller. The proposed method is based on Bayes' theorem. Using Bayes' rule to obtain the stochastic model of the inverse controller allows the use of knowledge of uncertainty from both the inverse and the forward model in estimating the optimal control signal. The paper presents the methodology for general nonlinear systems. For illustration purposes, the proposed methodology is applied to linear Gaussian systems. © 2004 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62F15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real purpose of collecting big data is to identify causality in the hope that this will facilitate credible predictivity . But the search for causality can trap one into infinite regress, and thus one takes refuge in seeking associations between variables in data sets. Regrettably, the mere knowledge of associations does not enable predictivity. Associations need to be embedded within the framework of probability calculus to make coherent predictions. This is so because associations are a feature of probability models, and hence they do not exist outside the framework of a model. Measures of association, like correlation, regression, and mutual information merely refute a preconceived model. Estimated measures of associations do not lead to a probability model; a model is the product of pure thought. This paper discusses these and other fundamentals that are germane to seeking associations in particular, and machine learning in general. ACM Computing Classification System (1998): H.1.2, H.2.4., G.3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 94A17.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62E16, 65C05, 65C20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lifelong surveillance is not cost-effective after endovascular aneurysm repair (EVAR), but is required to detect aortic complications which are fatal if untreated (type 1/3 endoleak, sac expansion, device migration). Aneurysm morphology determines the probability of aortic complications and therefore the need for surveillance, but existing analyses have proven incapable of identifying patients at sufficiently low risk to justify abandoning surveillance. This study aimed to improve the prediction of aortic complications, through the application of machine-learning techniques. Patients undergoing EVAR at 2 centres were studied from 2004–2010. Aneurysm morphology had previously been studied to derive the SGVI Score for predicting aortic complications. Bayesian Neural Networks were designed using the same data, to dichotomise patients into groups at low- or high-risk of aortic complications. Network training was performed only on patients treated at centre 1. External validation was performed by assessing network performance independently of network training, on patients treated at centre 2. Discrimination was assessed by Kaplan-Meier analysis to compare aortic complications in predicted low-risk versus predicted high-risk patients. 761 patients aged 75 +/− 7 years underwent EVAR in 2 centres. Mean follow-up was 36+/− 20 months. Neural networks were created incorporating neck angu- lation/length/diameter/volume; AAA diameter/area/volume/length/tortuosity; and common iliac tortuosity/diameter. A 19-feature network predicted aor- tic complications with excellent discrimination and external validation (5-year freedom from aortic complications in predicted low-risk vs predicted high-risk patients: 97.9% vs. 63%; p < 0.0001). A Bayesian Neural-Network algorithm can identify patients in whom it may be safe to abandon surveillance after EVAR. This proposal requires prospective study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ely and Peski (2006) and Friedenberg and Meier (2010) provide examples when changing the type space behind a game, taking a "bigger" type space, induces changes of Bayesian Nash Equilibria, in other words, the Bayesian Nash Equilibrium is not invariant under type morphisms. In this paper we introduce the notion of strong type morphism. Strong type morphisms are stronger than ordinary and conditional type morphisms (Ely and Peski, 2006), and we show that Bayesian Nash Equilibria are not invariant under strong type morphisms either. We present our results in a very simple, finite setting, and conclude that there is no chance to get reasonable assumptions for Bayesian Nash Equilibria to be invariant under any kind of reasonable type morphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The beginning of the 21st century was plagued with unprecedented instances of corporate fraud. In an attempt to address apparent non-existent or “broken” corporate governance policies, sweeping measures of financial reporting reform ensued, having specific requirements relating to the composition of audit committees, the interaction between audit committees and external auditors, and procedures concerning auditors’ assessment of client risk. The purpose of my dissertation is to advance knowledge about “good” corporate governance by examining the association between meeting-or-beating analyst forecasts and audit fees, audit committee compensation, and audit committee tenure and “busyness”. Using regression analysis, I found the following: (1) the frequency of meeting-or-just beating (just missing) analyst forecasts is negatively (positively) associated with audit fees, (2) the extent by which a firm exceeds analysts’ forecasts is positively (negatively) associated with audit committee compensation that is predominately equity-based (cash-based), and (3) the likelihood of repeatedly meeting-or-just beating analyst forecasts is positively associated with audit committee tenure and “busyness”. These results suggest that auditors consider clients who frequently meet-or-just beat forecasts as being less “risky”, and clients that frequently just miss as being more “risky”. The results also imply that cash-based director compensation is more successful in preserving the effectiveness of the audit committee’s financial reporting oversight role, that equity-based compensation motivates independent audit committee directors to focus on short-term performance thereby aligning their interests with management, and that audit committee director tenure and the degree of director “busyness” can affect an audit committee member’s effectiveness in providing financial reporting oversight. Collectively, my dissertation provides additional insights regarding corporate governance practices and informs policy-makers for future relevant decisions.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corporate executives closely monitor the accuracy of their hotels' occupancy fore- casts since important decisions are based upon these predictions. This study lists the criteria for selecting an appropriate error measure. It discusses several evaluation methods focusing on statistical significance tests and demonstrates the use of two adequate evaluation methods: Mincer- Zamowitz's efficiency test and Wilcoxon's Non-Parametric Matched-Pairs Signed- Ranks test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.