929 resultados para Based structure model
Resumo:
Wastewater-based epidemiology consists in acquiring relevant information about the lifestyle and health status of the population through the analysis of wastewater samples collected at the influent of a wastewater treatment plant. Whilst being a very young discipline, it has experienced an astonishing development since its firs application in 2005. The possibility to gather community-wide information about drug use has been among the major field of application. The wide resonance of the first results sparked the interest of scientists from various disciplines. Since then, research has broadened in innumerable directions. Although being praised as a revolutionary approach, there was a need to critically assess its added value, with regard to the existing indicators used to monitor illicit drug use. The main, and explicit, objective of this research was to evaluate the added value of wastewater-based epidemiology with regards to two particular, although interconnected, dimensions of illicit drug use. The first is related to trying to understand the added value of the discipline from an epidemiological, or societal, perspective. In other terms, to evaluate if and how it completes our current vision about the extent of illicit drug use at the population level, and if it can guide the planning of future prevention measures and drug policies. The second dimension is the criminal one, with a particular focus on the networks which develop around the large demand in illicit drugs. The goal here was to assess if wastewater-based epidemiology, combined to indicators stemming from the epidemiological dimension, could provide additional clues about the structure of drug distribution networks and the size of their market. This research had also an implicit objective, which focused on initiating the path of wastewater- based epidemiology at the Ecole des Sciences Criminelles of the University of Lausanne. This consisted in gathering the necessary knowledge about the collection, preparation, and analysis of wastewater samples and, most importantly, to understand how to interpret the acquired data and produce useful information. In the first phase of this research, it was possible to determine that ammonium loads, measured directly in the wastewater stream, could be used to monitor the dynamics of the population served by the wastewater treatment plant. Furthermore, it was shown that on the long term, the population did not have a substantial impact on consumption patterns measured through wastewater analysis. Focussing on methadone, for which precise prescription data was available, it was possible to show that reliable consumption estimates could be obtained via wastewater analysis. This allowed to validate the selected sampling strategy, which was then used to monitor the consumption of heroin, through the measurement of morphine. The latter, in combination to prescription and sales data, provided estimates of heroin consumption in line with other indicators. These results, combined to epidemiological data, highlighted the good correspondence between measurements and expectations and, furthermore, suggested that the dark figure of heroin users evading harm-reduction programs, which would thus not be measured by conventional indicators, is likely limited. In the third part, which consisted in a collaborative study aiming at extensively investigating geographical differences in drug use, wastewater analysis was shown to be a useful complement to existing indicators. In particular for stigmatised drugs, such as cocaine and heroin, it allowed to decipher the complex picture derived from surveys and crime statistics. Globally, it provided relevant information to better understand the drug market, both from an epidemiological and repressive perspective. The fourth part focused on cannabis and on the potential of combining wastewater and survey data to overcome some of their respective limitations. Using a hierarchical inference model, it was possible to refine current estimates of cannabis prevalence in the metropolitan area of Lausanne. Wastewater results suggested that the actual prevalence is substantially higher compared to existing figures, thus supporting the common belief that surveys tend to underestimate cannabis use. Whilst being affected by several biases, the information collected through surveys allowed to overcome some of the limitations linked to the analysis of cannabis markers in wastewater (i.e., stability and limited excretion data). These findings highlighted the importance and utility of combining wastewater-based epidemiology to existing indicators about drug use. Similarly, the fifth part of the research was centred on assessing the potential uses of wastewater-based epidemiology from a law enforcement perspective. Through three concrete examples, it was shown that results from wastewater analysis can be used to produce highly relevant intelligence, allowing drug enforcement to assess the structure and operations of drug distribution networks and, ultimately, guide their decisions at the tactical and/or operational level. Finally, the potential to implement wastewater-based epidemiology to monitor the use of harmful, prohibited and counterfeit pharmaceuticals was illustrated through the analysis of sibutramine, and its urinary metabolite, in wastewater samples. The results of this research have highlighted that wastewater-based epidemiology is a useful and powerful approach with numerous scopes. Faced with the complexity of measuring a hidden phenomenon like illicit drug use, it is a major addition to the panoply of existing indicators. -- L'épidémiologie basée sur l'analyse des eaux usées (ou, selon sa définition anglaise, « wastewater-based epidemiology ») consiste en l'acquisition d'informations portant sur le mode de vie et l'état de santé d'une population via l'analyse d'échantillons d'eaux usées récoltés à l'entrée des stations d'épuration. Bien qu'il s'agisse d'une discipline récente, elle a vécu des développements importants depuis sa première mise en oeuvre en 2005, notamment dans le domaine de l'analyse des résidus de stupéfiants. Suite aux retombées médiatiques des premiers résultats de ces analyses de métabolites dans les eaux usées, de nombreux scientifiques provenant de différentes disciplines ont rejoint les rangs de cette nouvelle discipline en développant plusieurs axes de recherche distincts. Bien que reconnu pour son coté objectif et révolutionnaire, il était nécessaire d'évaluer sa valeur ajoutée en regard des indicateurs couramment utilisés pour mesurer la consommation de stupéfiants. En se focalisant sur deux dimensions spécifiques de la consommation de stupéfiants, l'objectif principal de cette recherche était focalisé sur l'évaluation de la valeur ajoutée de l'épidémiologie basée sur l'analyse des eaux usées. La première dimension abordée était celle épidémiologique ou sociétale. En d'autres termes, il s'agissait de comprendre si et comment l'analyse des eaux usées permettait de compléter la vision actuelle sur la problématique, ainsi que déterminer son utilité dans la planification des mesures préventives et des politiques en matière de stupéfiants actuelles et futures. La seconde dimension abordée était celle criminelle, en particulier, l'étude des réseaux qui se développent autour du trafic de produits stupéfiants. L'objectif était de déterminer si cette nouvelle approche combinée aux indicateurs conventionnels, fournissait de nouveaux indices quant à la structure et l'organisation des réseaux de distribution ainsi que sur les dimensions du marché. Cette recherche avait aussi un objectif implicite, développer et d'évaluer la mise en place de l'épidémiologie basée sur l'analyse des eaux usées. En particulier, il s'agissait d'acquérir les connaissances nécessaires quant à la manière de collecter, traiter et analyser des échantillons d'eaux usées, mais surtout, de comprendre comment interpréter les données afin d'en extraire les informations les plus pertinentes. Dans la première phase de cette recherche, il y pu être mis en évidence que les charges en ammonium, mesurées directement dans les eaux usées permettait de suivre la dynamique des mouvements de la population contributrice aux eaux usées de la station d'épuration de la zone étudiée. De plus, il a pu être démontré que, sur le long terme, les mouvements de la population n'avaient pas d'influence substantielle sur le pattern de consommation mesuré dans les eaux usées. En se focalisant sur la méthadone, une substance pour laquelle des données précises sur le nombre de prescriptions étaient disponibles, il a pu être démontré que des estimations exactes sur la consommation pouvaient être tirées de l'analyse des eaux usées. Ceci a permis de valider la stratégie d'échantillonnage adoptée, qui, par le bais de la morphine, a ensuite été utilisée pour suivre la consommation d'héroïne. Combinée aux données de vente et de prescription, l'analyse de la morphine a permis d'obtenir des estimations sur la consommation d'héroïne en accord avec des indicateurs conventionnels. Ces résultats, combinés aux données épidémiologiques ont permis de montrer une bonne adéquation entre les projections des deux approches et ainsi démontrer que le chiffre noir des consommateurs qui échappent aux mesures de réduction de risque, et qui ne seraient donc pas mesurés par ces indicateurs, est vraisemblablement limité. La troisième partie du travail a été réalisée dans le cadre d'une étude collaborative qui avait pour but d'investiguer la valeur ajoutée de l'analyse des eaux usées à mettre en évidence des différences géographiques dans la consommation de stupéfiants. En particulier pour des substances stigmatisées, telles la cocaïne et l'héroïne, l'approche a permis d'objectiver et de préciser la vision obtenue avec les indicateurs traditionnels du type sondages ou les statistiques policières. Globalement, l'analyse des eaux usées s'est montrée être un outil très utile pour mieux comprendre le marché des stupéfiants, à la fois sous l'angle épidémiologique et répressif. La quatrième partie du travail était focalisée sur la problématique du cannabis ainsi que sur le potentiel de combiner l'analyse des eaux usées aux données de sondage afin de surmonter, en partie, leurs limitations. En utilisant un modèle d'inférence hiérarchique, il a été possible d'affiner les actuelles estimations sur la prévalence de l'utilisation de cannabis dans la zone métropolitaine de la ville de Lausanne. Les résultats ont démontré que celle-ci est plus haute que ce que l'on s'attendait, confirmant ainsi l'hypothèse que les sondages ont tendance à sous-estimer la consommation de cannabis. Bien que biaisés, les données récoltées par les sondages ont permis de surmonter certaines des limitations liées à l'analyse des marqueurs du cannabis dans les eaux usées (i.e., stabilité et manque de données sur l'excrétion). Ces résultats mettent en évidence l'importance et l'utilité de combiner les résultats de l'analyse des eaux usées aux indicateurs existants. De la même façon, la cinquième partie du travail était centrée sur l'apport de l'analyse des eaux usées du point de vue de la police. Au travers de trois exemples, l'utilisation de l'indicateur pour produire du renseignement concernant la structure et les activités des réseaux de distribution de stupéfiants, ainsi que pour guider les choix stratégiques et opérationnels de la police, a été mise en évidence. Dans la dernière partie, la possibilité d'utiliser cette approche pour suivre la consommation de produits pharmaceutiques dangereux, interdits ou contrefaits, a été démontrée par l'analyse dans les eaux usées de la sibutramine et ses métabolites. Les résultats de cette recherche ont mis en évidence que l'épidémiologie par l'analyse des eaux usées est une approche pertinente et puissante, ayant de nombreux domaines d'application. Face à la complexité de mesurer un phénomène caché comme la consommation de stupéfiants, la valeur ajoutée de cette approche a ainsi pu être démontrée.
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm
Resumo:
The usual objectives that companies have for subcontracting are studied in this thesis. The case company’s objectives for contract manufacturing now and in the future are identified. The main objective of the thesis is to create a focused model for the structure and supply chain management in the contract manufacturing network. This model is made for case company’s certain profit center. The different possibilities and their advantages and disadvantages for the structure and supply chain management are examined trough a theoretical review of literature. The possibilities found are then examined from the case company’s point of view. The case company point of view is established based on the opinions of the case company’s representatives. The outcome of the thesis is that the star shaped structure with supply chain management centralized to case company would be the best choice for the case company to manage the contract manufacture network.
Resumo:
Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.
Resumo:
The topological solitons of two classical field theories, the Faddeev-Skyrme model and the Ginzburg-Landau model are studied numerically and analytically in this work. The aim is to gain information on the existence and properties of these topological solitons, their structure and behaviour under relaxation. First, the conditions and mechanisms leading to the possibility of topological solitons are explored from the field theoretical point of view. This leads one to consider continuous deformations of the solutions of the equations of motion. The results of algebraic topology necessary for the systematic treatment of such deformations are reviewed and methods of determining the homotopy classes of topological solitons are presented. The Faddeev-Skyrme and Ginzburg-Landau models are presented, some earlier results reviewed and the numerical methods used in this work are described. The topological solitons of the Faddeev-Skyrme model, Hopfions, are found to follow the same mechanisms of relaxation in three different domains with three different topological classifications. For two of the domains, the necessary but unusual topological classification is presented. Finite size topological solitons are not found in the Ginzburg-Landau model and a scaling argument is used to suggest that there are indeed none unless a certain modification to the model, due to R. S. Ward, is made. In that case, the Hopfions of the Faddeev-Skyrme model are seen to be present for some parameter values. A boundary in the parameter space separating the region where the Hopfions exist and the area where they do not exist is found and the behaviour of the Hopfion energy on this boundary is studied.
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
In general, models of ecological systems can be broadly categorized as ’top-down’ or ’bottom-up’ models, based on the hierarchical level that the model processes are formulated on. The structure of a top-down, also known as phenomenological, population model can be interpreted in terms of population characteristics, but it typically lacks an interpretation on a more basic level. In contrast, bottom-up, also known as mechanistic, population models are derived from assumptions and processes on a more basic level, which allows interpretation of the model parameters in terms of individual behavior. Both approaches, phenomenological and mechanistic modelling, can have their advantages and disadvantages in different situations. However, mechanistically derived models might be better at capturing the properties of the system at hand, and thus give more accurate predictions. In particular, when models are used for evolutionary studies, mechanistic models are more appropriate, since natural selection takes place on the individual level, and in mechanistic models the direct connection between model parameters and individual properties has already been established. The purpose of this thesis is twofold. Firstly, a systematical way to derive mechanistic discrete-time population models is presented. The derivation is based on combining explicitly modelled, continuous processes on the individual level within a reproductive period with a discrete-time maturation process between reproductive periods. Secondly, as an example of how evolutionary studies can be carried out in mechanistic models, the evolution of the timing of reproduction is investigated. Thus, these two lines of research, derivation of mechanistic population models and evolutionary studies, are complementary to each other.
Resumo:
Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2. The technique typically employs a dual fluidized bed system where a metal oxide is used as a solid oxygen carrier that transfers the oxygen from combustion air to the fuel. The oxygen carrier is looping between the air reactor, where it is oxidized by the air, and the fuel reactor, where it is reduced by the fuel. Hence, air is not mixed with the fuel, and outgoing CO2 does not become diluted by the nitrogen, which gives a possibility to collect the CO2 from the flue gases after the water vapor is condensed. CLC is being proposed as a promising and energy efficient carbon capture technology, since it can achieve both an increase in power station efficiency simultaneously with low energy penalty from the carbon capture. The outcome of a comprehensive literature study concerning the current status of CLC development is presented in this thesis. Also, a steady state model of the CLC process, based on the conservation equations of mass and energy, was developed. The model was used to determine the process conditions and to calculate the reactor dimensions of a 100 MWth CLC system with bunsenite (NiO) as oxygen carrier and methane (CH4) as fuel. This study has been made in Oxygen Carriers and Their Industrial Applications research project (2008 – 2011), funded by the Tekes – Functional Material program. I would like to acknowledge Tekes and participating companies for funding and all project partners for good and comfortable cooperation.
Resumo:
Sulfonamides obtained by reaction of 8-aminoquinoline with 4-nitrobenzenesulfonylchloride and 2,4,6-triisopropylbenzenesulfonyl chloride were used to synthesize coordination compounds with CuII and ZnII with a ML2 composition. Determination of the crystal structures of the resulting zinc and copper complexes by X-ray diffraction show a distorted tetrahedral environment for the [Cu(qnbsa)2], [Cu(qibsa)2] and [Zn(qibsa)2] complexes in which the sulfonamide group acts as a bidentate ligand through the nitrogen atoms from the sulfonamidate and quinoline groups. The complex [Zn(qnbsa)2] crystallizes with a water molecule from the solvent and the Zn is five-coordinated and shows a bipyramidal-trigonal geometry. The electrochemical and electronic spectroscopy properties of the copper complexes are also discussed.
Resumo:
The atomic shell structure can be observed by inspecting the experimental periodic properties of the Periodic Table. The (quantum) shell structure emerges from these properties and in this way quantum mechanics can be explicitly shown considering the (semi-)quantitative periodic properties. These periodic properties can be obtained with a simple effective Bohr model. An effective Bohr model with an effective quantum defect (u) was considered as a probe in order to show the quantum structure embedded in the Periodic Table. u(Z) shows a quasi-smoothed dependence of Z, i.e., u(Z) ≈ Z2/5 - 1.
Resumo:
On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H), and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O) to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O) that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577) and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.
Resumo:
The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.
Resumo:
The purpose of this thesis is to develop an environment or network that enables effective collaborative product structure management among stakeholders in each unit, throughout the entire product lifecycle and product data management. This thesis uses framework models as an approach to the problem. Framework model methods for development of collaborative product structure management are proposed in this study, there are three unique models depicted to support collaborative product structure management: organization model, process model and product model. In the organization model, the formation of product data management system (eDSTAT) key user network is specified. In the process model, development is based on the case company’s product development matrix. In the product model framework, product model management, product knowledge management and design knowledge management are defined as development tools and collaboration is based on web-based product structure management. Collaborative management is executed using all these approaches. A case study from an actual project at the case company is presented as an implementation; this is to verify the models’ applicability. A computer assisted design tool and the web-based product structure manager, have been used as tools of this collaboration with the support of the key user. The current PDM system, eDSTAT, is used as a piloting case for key user role. The result of this development is that the role of key user as a collaboration channel is defined and established. The key user is able to provide one on one support for the elevator projects. Also the management activities are improved through the application of process workflow by following criteria for each project milestone. The development shows effectiveness of product structure management in product lifecycle, improved production process by eliminating barriers (e.g. improvement of two-way communication) during design phase and production phase. The key user role is applicable on a global scale in the company.
Resumo:
This study presents an automatic, computer-aided analytical method called Comparison Structure Analysis (CSA), which can be applied to different dimensions of music. The aim of CSA is first and foremost practical: to produce dynamic and understandable representations of musical properties by evaluating the prevalence of a chosen musical data structure through a musical piece. Such a comparison structure may refer to a mathematical vector, a set, a matrix or another type of data structure and even a combination of data structures. CSA depends on an abstract systematic segmentation that allows for a statistical or mathematical survey of the data. To choose a comparison structure is to tune the apparatus to be sensitive to an exclusive set of musical properties. CSA settles somewhere between traditional music analysis and computer aided music information retrieval (MIR). Theoretically defined musical entities, such as pitch-class sets, set-classes and particular rhythm patterns are detected in compositions using pattern extraction and pattern comparison algorithms that are typical within the field of MIR. In principle, the idea of comparison structure analysis can be applied to any time-series type data and, in the music analytical context, to polyphonic as well as homophonic music. Tonal trends, set-class similarities, invertible counterpoints, voice-leading similarities, short-term modulations, rhythmic similarities and multiparametric changes in musical texture were studied. Since CSA allows for a highly accurate classification of compositions, its methods may be applicable to symbolic music information retrieval as well. The strength of CSA relies especially on the possibility to make comparisons between the observations concerning different musical parameters and to combine it with statistical and perhaps other music analytical methods. The results of CSA are dependent on the competence of the similarity measure. New similarity measures for tonal stability, rhythmic and set-class similarity measurements were proposed. The most advanced results were attained by employing the automated function generation – comparable with the so-called genetic programming – to search for an optimal model for set-class similarity measurements. However, the results of CSA seem to agree strongly, independent of the type of similarity function employed in the analysis.