1000 resultados para BURG-0
Resumo:
A set of audio signal processing software for Max/MSP and Pure Data.
Resumo:
Domain states in PbZr(0.42)Ti(0.58)O3 single-crystal ferroelectric nanodots, formed on cooling through the Curie temperature, were imaged by transmission electron microscopy. In the majority of cases, 90o stripe domains were found to form into four distinct “bundles” or quadrants. Detailed analysis of the dipole orientations in the system was undertaken, using both dark-field imaging and an assumption that charged domain walls were energetically unfavorable in comparison to uncharged walls. On this basis, we conclude that the dipoles in these nanodots are arranged such that the resultant polarizations, associated with the four quadrant domain bundles, form into a closed loop. This “polarization closure” pattern is reminiscent of the flux-closure already commonly observed in soft ferromagnetic microdots but to date unseen in analogous ferroelectric dots.
Resumo:
We have undertaken a 330-360 GHz molecular line survey of the halo gas surrounding the hot core associated with G34.26+0.15. In contrast to our molecular line survey of the hot core itself, where 338 lines from at least 38 species were detected, only 18 lines from 9 species were detected in the halo. The lines are mainly single transitions of simple di atomic and triatomic molecules. Lower limits to their column densities have been evaluated by an LTE method. In the case of methanol, where four transitions were detected, the rotation temperature and column density have been evaluated by the rotation diagram technique. We have modified the previous depth-dependent chemical model developed in Paper II to calculate the column densities observed along a general line of sight drawn through the model cloud. The model is also extended to produce beam-averaged column densities for better comparison with those observed. We compare the model column densities with those observed and make recommendations for future depth-dependent chemical modelling of hot cores.
Resumo:
We describe a detailed depth-and time-dependent model of the molecular cloud associated with the ultracompact H II region G 34.3+0.15. Previous work on observations of NH3 and CS indicates that the molecular cloud has three distinct physical components:- an ultracompact hot core, a compact hot core and an extended halo. We have used the physical parameters derived from these observations as input to our detailed chemical kinetic modelling. The results of the model calculations are discussed with reference to the different chemistries occuring in each component and are compared with abundances derived from our recent spectral line survey of G 34.3+0.15 (Paper I).
Resumo:
A 330--360 GHz spectral survey of the hot molecular core associated with the 'cometary' ultracompact HII region G 34.3+/-0.15 observed with the James Clerk Maxwell Telescope has detected 338 spectral lines from at least 35 distinct chemical species plus 19 isotopomers. 70 lines remain unidentified. Chemical abundance and rotation temperature have been determined by rotation diagram analysis for 12 species, and lower limits to abundance found for 38 others.
Resumo:
Hot molecular cores in star-forming regions are known to have gas-phase chemical compositions determined by the evaporation of material from the icy mantles of interstellar grains, followed by subsequent reactions in the gas phase. Current models suggest that the evaporated material is rich in hydrogenated species, such as water, methane and methanol. In this paper, we report the detection of 14 rotational transitions of ethanol in the submillimetre spectrum of the molecular cloud associated with the ultra-compact H II region G34.3+0.15. We derive a rotation temperature of 125 K and a beam-averaged column density of 2.0x10(15) cm(-2), corresponding to a fractional abundance on the order of 4x10(-9). This large abundance, which is a lower limit due to the likelihood of beam dilution, cannot be made by purely gas-phase processes, and we conclude that the ethanol must be formed efficiently in the grain surface chemistry. Since it has been argued previously that methanol is formed via surface chemistry, it appears that alcohol formation may be a natural by-product of surface reactions.
Resumo:
We report the detection of a 0.6 MJ extrasolar planet by WASP-South, WASP-25b, transiting its solar-type host star every 3.76 d. A simultaneous analysis of the WASP, FTS and Euler photometry and CORALIE spectroscopy yields a planet of Rp= 1.22 RJ and Mp= 0.58 MJ around a slightly metal-poor solar-type host star, [Fe/H]=- 0.05 ± 0.10, of R*= 0.92 Rsun and M*= 1.00 Msun. WASP-25b is found to have a density of ?p= 0.32 ?J, a low value for a sub-Jupiter mass planet. We investigate the relationship of planetary radius to planetary equilibrium temperature and host star metallicity for transiting exoplanets with a similar mass to WASP-25b, finding that these two parameters explain the radii of most low-mass planets well.
Resumo:
From WASP photometry and SOPHIE radial velocities we report the discovery of WASP-40b (HAT-P-27b), a 0.6 M planet that transits its 12th magnitude host star every 3.04 days. The host star is of late G-type or early K-type and likely has a metallicity greater than solar ([Fe/H]=0.14±0.11). The planet's mass and radius are typical of the known hot Jupiters, thus adding another system to the apparent pileup of transiting planets with periods near 3-4 days. Our parameters match those of the recent HATnet announcement of the same planet, thus giving confidence in the techniques used. We report a possible indication of stellar activity in the host star.
Resumo:
We present the discovery of two ultraluminous supernovae (SNe) at z approximate to 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M-bol approximate to -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10(51) erg. We find photospheric velocities of 12,000-19,000 km s(-1) with no evidence for deceleration measured across similar to 3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
Resumo:
In the epidemiology of infectious diseases, the basic reproduction number, R-0, has a number of important applications, most notably it can be used to predict whether a pathogen is likely to become established, or persist, in a given area. We used the R-0 model to investigate the persistence of 3 tick-borne pathogens; Babesia microti, Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in an Apodemus sylvaticus-Ixodes ricinus system. The persistence of these pathogens was also determined empirically by screening questing ticks and wood mice by PCR. All 3 pathogens behaved differently in response to changes in the proportion of transmission hosts on which I. ricinus fed, the efficiency of transmission between the host and ticks and the abundance of larval and nymphal ticks found on small mammals. Empirical data supported theoretical predictions of the R-0 model. The transmission pathway employed and the duration of systemic infection were also identified as important factors responsible for establishment or persistence of tick-borne pathogens in a given tick-host system. The current study demonstrates how the R-0 model can be put to practical use to investigate factors affecting tick-borne pathogen persistence, which has important implications for animal and human health worldwide.