972 resultados para BRINE DISPOSAL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective implementation of the Water Framework Directive requires a reappraisal of conventional approaches to water quality monitoring. Quantifying the impact of domestic wastewater treatment systems (DWWTS) in Irish catchments is further complicated by high levels of natural heterogeneity. This paper presents a numerical model that couples attenuation to flow along different hydrological pathways contributing to river discharge; this permits estimation of the impact of DWWTS to overall nutrient fluxes under a range of geological conditions. Preliminary results suggest high levels of attenuation experienced
before DWWTS effluent reaches bedrock play a significant role in reducing its ecological impact on aquatic receptors. Conversely, low levels of attenuation in systems discharging directly to surface water may affect water quality more significantly, particularly during prolonged dry periods in areas underlain by low productivity aquifers (>60% of Ireland), where dilution capacity is limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poorly functioning on-site wastewater treatment systems (OSWTS) can be among the many sources of pollution to groundwater and surface water, which are of critical concern owing to potential human and ecological health risks. An investigation into the effects of on-site wastewater treatment systems (OSWTS) on surface water quality has been undertaken at several sites within a catchment in Co. Monaghan. The study sites were located in areas of 'low’ permeability, suggesting that run-off usually dominates over infiltration. Poor treatment performance of OSWTS within the catchment were found to be the result of several factors, including location in areas with unsuitable soil and site characteristics, incorrect installation, poor maintenance and inappropriate operation by the home owner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A groundwater programme monitoring flow and quality of a potable water spring in a slum district in Kampala, Uganda revealed that although latrines acted as the principal means of organic waste disposal for the 1000 plus people living in the spring’s catchment, levels of faecal indicator bacteria (TVC 45 Deg C) in spring discharge remained at or below detection during the dry season, despite the presence of high levels of chloride (45mg/l-56mg/l) and nitrate (23mg/l – 30mg/l NO3-N), indicating sewage impacts. A programme of column and batch testing of laterite underlying the area provided a means of investigating the soil’s attenuation capacity under more controlled conditions.
X-ray diffraction analyses revealed the laterite to be dominated by quartz and kaolinite with minor (<5% by volume) quantities of haematite. Batch studies revealed that over 99% of bacteriophage adsorbed to haematite in less than 5 minutes. By contrast batch tests on haematite-free soil samples from the Blue Hills in Australia showed that although they had comparable dominant mineralogy and iron coverage on their surfaces (determined from Energy dispersive X-ray fluorescence) they had negligible ability to adsorb H40/1.
Based on the results of the batch studies using natural soils, a programme of batch studies, undertaken using pure haematite showed the mineral to have an extremely high capacity to adsorb bacteriophage, and suggested that it was responsible for the levels of attenuation observed.
The results of column studies were in keeping with the findings of batch experiments. Injection of 20 pore volumes of 300 pfu/mL of the bacteriophage H40/1 into a 20mm diameter glass column packed with sand sized (Ø>500µm) laterite revealed that the column could irreversibly remove over 2.5 log10 bacteriophage over its 10cm length.
Importance:
Mineralogical and batch test data provide convincing evidence to show that laterite can potentially act as an inexpensive means of removing micro organisms from water. The material, particularly in nodular form, displays considerable potential to act as an alternative filter material to conventional quartz filter sands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rate and type of biological colonization of stone is influenced by a wide array of environmental factors in addition to substrate characteristics. A series of experiments was designed to compare the rate and type of biological colonization of stone at varying locations over a 21-month time period. Exposure
trials were set up at nine different sites across Northern Ireland that covered a wide variety of environmental conditions. To determine aspect-related differences in colonization, blocks of Peakmoor sandstone and Portland limestone were placed on the north- and south-facing sides of purpose-designed exposure racks. Colorimetry and visual analysis were carried out on collected samples at increasing time intervals. Results showed significantly different rates of darkening and greening over time between north-facing and south-facing blocks, for both sandstone and limestone. This difference is likely to be representative of the fact that in Northern Ireland’s wet climate and northern-latitude position, the north face of a building will receive less direct sunlight. Therefore north-facing blocks, once wet, will remain damp for much longer than blocks on other façades. This slow-drying phenomenon is much more hospitable for biological colonization and continued growth than the hostile environment of rapid wetting and drying cycles experienced on the south face.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to achieve progress towards sustainable resource management, it is essential to evaluate options for the reuse and recycling of secondary raw materials, in order to provide a robust evidence base for decision makers. This paper presents the research undertaken in the development of a web-based decision-support tool (the used tyres resource efficiency tool) to compare three processing routes for used tyres compared to their existing primary alternatives. Primary data on the energy and material flows for the three routes, and their alternatives were collected and analysed. The methodology used was a streamlined life-cycle assessment (sLCA) approach. Processes included were: car tyre baling against aggregate gabions; car tyre retreading against new car tyres; and car tyre shred used in landfill engineering against primary aggregates. The outputs of the assessment, and web-based tool, were estimates of raw materials used, carbon dioxide emissions and costs. The paper discusses the benefits of carrying out a streamlined LCA and using the outputs of this analysis to develop a decision-support tool. The strengths and weakness of this approach are discussed and future research priorities identified which could facilitate the use of life cycle approaches by designers and practitioners.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field survey was conducted to investigate the contamination of potentially toxic elements (PTEs) arsenic (As), lead (Pb), chromium (Cr), and nickel (Ni) in Tanzanian agricultural soils and to evaluate their uptake and translocation in maize as proxy to the safety of maize used for human and animal consumption. Soils and maize tissues were sampled from 40 farms in Tanzania and analyzed using inductively coupled plasma-mass spectrometry in the United Kingdom. The results showed high levels of PTEs in both soils and maize tissues above the recommended limits. Nickel levels of up to 34.4 and 56.9mgkg(-1) respectively were found in some maize shoots and grains from several districts. Also, high Pb levels >0.2mgkg(-1) were found in some grains. The grains and shoots with high levels of Ni and Pb are unfit for human and animal consumption. Concentrations of individual elements in maize tissues and soils did not correlate and showed differences in uptake and translocation. However, Ni showed a more efficient transfer from soils to shoots than As, Pb and Cr. Transfer of Cr and Ni from shoots to grains was higher than other elements, implying that whatever amount is assimilated in maize shoots is efficiently mobilized and transferred to grains. Thus, the study recommended to the public to stop consuming and feeding their animals maize with high levels of PTEs for their safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In this study, the efficiency of Guar gum as a biopolymer has been compared with two other widely used inorganic coagulants, ferric chloride (FeCl3) and aluminum chloride (AlCl3), for the treatment of effluent collected from the rubber-washing tanks of a rubber concentrate factory. Settling velocity distribution curves were plotted to demonstrate the flocculating effect of FeCl3, AlCl3 and Guar gum. FeCl3 and AlCl3 displayed better turbidity removal than Guar gum at all settling velocities.

Result: FeCl3, AlCl3 and Guar gum removed 92.8%, 88.2% and 88.1% turbidity, respectively, of raw wastewater at a settling velocity of 0.1 cm min-1, respectively. Scanning electron microscopic (SEM) study conducted on the flocs revealed that Guar gum and FeCl3produced strong intercoiled honeycomb patterned floc structure capable of entrapping suspended particulate matter. Statistical experimental design Response Surface Methodology (RSM) was used to design all experiments, where the type and dosage of flocculant, pH and mixing speed were taken as control factors and, an optimum operational setting was proposed.

Conclusion: Due to biodegradability issues, the use of Guar gum as a flocculating agent for wastewater treatment in industry is highly recommended.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arsenic (As) contamination of communal tubewells in Prey Vêng, Cambodia, has been observed since 2000. Many of these wells exceed the WHO As in drinking water standard of 10 µg/L by a factor of 100. The aim of this study was to assess how cooking water source impacts dietary As intake in a rural community in Prey Vêng. This aim was fulfilled by (1) using geostatistical analysis techniques to examine the extent of As contaminated groundwater in Prey Vêng and identify a suitable study site, (2) conducting an on-site study in two villages to measure As content in cooked rice prepared with water collected from tubewells and locally harvested rainwater, and (3) determining the dietary intake of As from consuming this rice. Geostatistical analysis indicated that high risk tubewells (>50 µg As/L) are concentrated along the Mekong River's east bank. Participants using high risk tubewells are consuming up to 24 times more inorganic As daily than recommended by the previous FAO/WHO provisional tolerable daily intake value (2.1 µg/kgBW/day). However, As content in rice cooked in rainwater was significantly reduced, therefore, it is considered to be a safer and more sustainable option for this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site, the iron content of shallow subsurface materials (i.e. weathered saprolite) is relatively high (up to 5-6% as w/w), and therefore, the forms of the iron species present plays a critical role in the long-term sequestration of uranium. A long term pilot-scale study of the bioreduction and reoxidation of uranium conducted at the ORIFRC area 3 site, adjacent to the former S-3 disposal ponds (source zone), has provided us with the opportunity to study the impact of iron species on the sequestration of U(VI). The aqueous U(VI) concentrations at the site were decreased to below the EPA MCL through the intermittent injection of ethanol as the electron donor. Previous field tests indicated that both oxygen and nitrate could oxidize the bioreduced U(IV) and cause a short-term rebound of aqueous phase uranium concentration after the oxidative agents were delivered directly to the bioreduced zone.

A field test has been conducted to examine the long-term effect of exposure of bioreduced sediments to nitrate in contaminated groundwater for more than 1,380 days at the Area 3 site. Contaminated groundwater was allowed to invade the previously bioreduced zone via the natural groundwater gradient after an extended period in which reducing conditions were maintained and the bioreduced zone was protected from the influx of upgradient contaminated groundwater. The geochemical response to the invasion of contaminated groundwater was dependent on whether the monitoring location is in the middle or the fringe of the previously bioreduced zone. In general, the nitrate concentrations in the previously bioreduced area, increased gradually from near zero to ~50-300 mM within 200 days and then stabilized. The pH declined from bioreduced levels of 6.2-6.7 to below 5.0. Uranium concentrations rebounded in all monitoring wells but at different rates. At most locations U concentrations rebounded, declined and then rebounded again. Methane gas disappeared while a significant level (20,000 to 44,000 ppmv) N2O was found in the groundwater of monitoring wells after three years of reoxidization.

The U(IV) in sediments was mainly reoxidized to U(VI) species. Based on XANES analysis, the predominate uranium in all samples after re-oxidation was similar to a uranyl nitrate form. But the U content in the sediment remained as high as that determined after bioreduction activates were completed, indicating that much of the U is still sequestrated in situ. SEM observations of surged fine sediments revealed that clusters of colloidal-sized (200-500nm) U-containing precipitates appeared to have formed in situ, regardless from sample of FW106 in non-bioactivity control area or of pre-bioreduced FW101-2 and FW102-3. Additionally, SEM-EDS and microprobe analysis, showed that the U-containing precipitates (~1% U) in FW106 are notably higher in Fe, compared to the precipitates (~1-2.5% U) from FW101-2 and FW102-3. However, XRF analysis indicated that the U content was remained as high as 2180 and 1810 mg/kg with U/Fe ratio at 0.077 and 0.055 vs 0.037 g/g, respectively in pre-bioreduced FW101-2 and FW102-3, suggesting more U sequestrated by Fe in pre-bioreduced sediments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The urgent need for alternative renewable energies to supplement petroleum-based fuels and the reduction of landfill sites for disposal of solid wastes makes it increasingly attractive to produce inexpensive biofuels from the organic fraction of the municipal solid waste. Therefore, municipal waste in the form of newspaper was investigated as a potential feedstock for fermentable sugars production. Hydrolysis of newspaper by dilute phosphoric acid was carried out in autoclave Parr reactor, where reactor temperature and acid concentration were examined. Xylose concentration reached a maximum value of 14 g/100 g dry mass corresponding to a yield of 94% at the best identified conditions of 2.5 wt% HPO, 135°C, 120 min reaction time, and at 2.5 wt% HPO, 150°C, and 60 min reaction time. For glucose, an average yield of 26% was obtained at 2.5 wt% HPO, 200°C, and 30 min. Furfural and 5-hydroxymethylfurfural (HMF) formation was clearly affected by reaction temperature, where the higher the temperature the higher the formation rate. The maximum furfural formed was an average of 3 g/100 g dry mass, corresponding to a yield of 28%. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the two-fraction models. It was found for both models that the kinetic constants (K) depend on the acid concentration and temperature. The degradation of HMF to levulinic acid is faster than the degradation of furfural to formic acid. Also, the degradation rate is higher than the formation rate for both inhibitors when degradation is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil conditioning consists of mixing and remolding the natural material during the mechanical excavation of tunnels, generally at low depth, with additives, in order to obtain suitable properties of plasticity and consistency for the excavated material, so becoming able to apply a counterpressure against natural earth pressure and groundwater flow towards the excavation chamber. The assessment and the control of the soil parameters and of machine performance are fundamental for a regular and safe excavation, also with regards to surface stability. This paper mainly focus on testing approach aimed to the proper soil conditioning with EPB shields, whose results have been validated at real scale. The influence of the water content and the amount of conditioning foam has been studied by the Authors. A proper definition of conditioning parameters can allow to extend the application field of Earth Pressure Balance (EPB) tunnel machines to various grain soil distribution, even in weak rock formations (e.g. siltstone or flysch). Importance of conditioning is reflected also on the possibility of a proper spoil disposal or better for its reuse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An underground work (such as a tunnel or a cavern) has many, well known, environmental qualities such as: no physical barriers crossing the land, less maintenance costs than an analogous surface structure, less expenses for heating and conditioning; a localized emission of noise, gas, dust during operation and, finally, a better protection against seismic actions.
It cannot be forgotten, anyway, that some negative environmental features are present such as, for example, : perturbation, pollution and drainage of the groundwater; settlements; disposal of waste rock.
In the paper the above mentioned concepts are discussed and analysed to give a global overview of all this aspects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landfills are the primary option for waste disposal all over the world. Most of the landfill sites across the world are old and are not engineered to prevent contamination of the underlying soil and groundwater by the toxic leachate. The pollutants from landfill leachate have accumulative and detrimental effect on the ecology and food chains leading to carcinogenic effects, acute toxicity and genotoxicity among human beings. Management of this highly toxic leachate presents a challenging problem to the regulatory authorities who have set specific regulations regarding maximum limits of contaminants in treated leachate prior to disposal into the environment to ensure minimal environmental impact. There are different stages of leachate management such as monitoring of its formation and flow into the environment, identification of hazards associated with it and its treatment prior to disposal into the environment. This review focuses on: (i) leachate composition, (ii) Plume migration, (iii) Contaminant fate, (iv) Leachate plume monitoring techniques, (v) Risk assessment techniques, Hazard rating methods, mathematical modeling, and (vi) Recent innovations in leachate treatment technologies. However, due to seasonal fluctuations in leachate composition, flow rate and leachate volume, the management approaches cannot be stereotyped. Every scenario is unique and the strategy will vary accordingly. This paper lays out the choices for making an educated guess leading to the best management option.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of seaweed fertilisers in sports green maintenance has become a common practice across the globe due to its image as an “eco-friendly” alternative to chemical fertilisers. The aim of this study was to characterise the risk of human exposure to arsenic (As), via dermal absorption, from golfing activities on a private golf course in the UK, where As contaminated seaweed fertiliser (~ 100 mg/kg d.wt.) is applied. This was fulfilled by, 1) determining As concentrations in shallow soils with GIS geo-statistical analysis, 2) measuring As concentrations from an on-site borehole groundwater well, and (3) developing a risk assessment calculation for golfing activities based on field and questionnaire data. Total As concentrations in shallow soils were less than the UK threshold for domestic soils, however, frequent and sustained dermal contact between site-users and surface soil attributed to a maximum carcinogenic risk value of 2.75 × 10− 4, which is in the upper limit of the acceptable risk range. Arsenic concentrations in underlying groundwater exceeded the WHO's permissible drinking water standard, demonstrating the risk of groundwater contamination following the application of seaweed fertiliser to golf course soils. This is the first risk study on dermal As absorption via the application of a seaweed fertiliser.