958 resultados para BEB electron impact ionization cross section
Resumo:
In this contribution, we discuss a total cross-section model which can be applied to both photon and purely hadronic processes. We find that the model can reproduce photo-production cross-sections, as well as extrapolation of gamma*p processes to gamma p using Vector Meson Dominance models, with minimal modifications from the proton case.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.
Resumo:
This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.
Resumo:
The role of cobalt centers in promoting the recombination and trapping processes in n-type germanium has been investigated. Data on lifetime measurements carried out by the steadystate photoconductivity and photo-magneto-electric methods in the temperature range 145 to 300°K on n-type germanium samples containing cobalt in the concentration range 1·1013 to 5.·014/cm3 are presented. The results are analysed on the basis of Sah-Shockley's multi-level formula to yield the capture cross-sections Sp= (hole capture cross-section at doubly negatively charged center) and Sn-(electron capture cross-section at singly negatively charged center) and temperature dependence. It is found that Sp= is (22 ± 6). 10-16 cm2 and Sn- is ∼ 0·1. 10-16 cm2 at 145°K. Sp= varies (n = 3·5 to 4·5) in the range 145-220°K; above 225°K the index 'n' tends to a smaller value. Sn- is practically temperature independent below 180°K and increases with increase of temperature above 180°K. The value of Sp= and its temperature variation lead one to the conclusion that during capture at attractive centers, the phonon cascade mechanism is responsible for the dissipation of the recombination energy.
Resumo:
First, in Essay 1, we test whether it is possible to forecast Finnish Options Index return volatility by examining the out-of-sample predictive ability of several common volatility models with alternative well-known methods; and find additional evidence for the predictability of volatility and for the superiority of the more complicated models over the simpler ones. Secondly, in Essay 2, the aggregated volatility of stocks listed on the Helsinki Stock Exchange is decomposed into a market, industry-and firm-level component, and it is found that firm-level (i.e., idiosyncratic) volatility has increased in time, is more substantial than the two former, predicts GDP growth, moves countercyclically and as well as the other components is persistent. Thirdly, in Essay 3, we are among the first in the literature to seek for firm-specific determinants of idiosyncratic volatility in a multivariate setting, and find for the cross-section of stocks listed on the Helsinki Stock Exchange that industrial focus, trading volume, and block ownership, are positively associated with idiosyncratic volatility estimates––obtained from both the CAPM and the Fama and French three-factor model with local and international benchmark portfolios––whereas a negative relation holds between firm age as well as size and idiosyncratic volatility.
Resumo:
Steady laminar flow of a non-Newtonian fluid based on couple stress fluid theory, through narrow tubes of varying cross-sections has been studied theoretically. Asymptotic solutions are obtained for the basic equations and the expressions for the velocity field and the wall shear stress are derived for a general cross-section. Computation and discussions are carried out for the geometries which occur in the context of physiological flows or in particular blood flows. The tapered tubes and constricted tubes are of special importance. It is observed that increase in certain parameters results in erratic flow behaviour proximal to the constricted areas which is further enhanced by the increase in the geometric parameters. This elucidates the implications of the flow in the development of vascular lesions.
Resumo:
Excitation spectra and transient and steady-state photoconductivity have been studied in undoped and 0.8-mole% Cu-doped single-crystal β-AgI between 150 and 260°K. A single peak in the spectral response was found to occur in each case, at 2.88 eV for undoped and at 2.81 eV for copper-doped specimens at 260 K, the difference being due to a decrease in band gap. The anisotropy due to polarization of incident radiation parallel or perpendicular to the c direction, which is a measure of the energy difference between the Γ9 and Γ7 levels in the valence band, was found to be 0.010 eV. Transient-photoconductivity experiments showed that the hole lifetime was 6 μ sec at 300°K, an order of magnitude larger than the electron lifetime. The hole drift mobility was found to be 12±2 cm2/ V sec at 300°K and limited by traps at a depth of 0.51±0.01 eV with concentration (3-5)×109/cm3 and capture cross section 10-11 cm2. The study of photoconductivity decay versus temperature revealed the presence of shallow hole traps at 0.14±0.02 eV with concentration greater than 1016/cm3 and capture cross section 10-19 cm2. The steady-state photoconductivity was determined by the deep hole traps at 0.51 eV, and showed the presence of shallow electron traps at a depth of 0.28 eV. The trap distribution was found to be substantially the same in pure and copper-doped specimens, indicating the monovalent substitutional role of copper. The effects of iodine annealing, cadmium doping, and heating above the transition temperature were also studied. The possible nature of the traps is discussed.
Resumo:
Tutkimuksen tavoitteena oli ottaa käyttöön tandemmassaspektrometrinen (MS/MS) menetelmä, jolla voidaan analysoida polysakkarideista purkautuneiden oligosakkaridien rakenteita. Tavoitteena oli, että menetelmällä voidaan määrittää glykosidisten sidosten eri asemat monosakkaridirakenteiltaan samanlaisista neutraaleista lineaarisista oligosakkarideista. Kirjallisuustutkimuksessa tarkasteltiin oligosakkaridien rakenteiden määrittämiseen käytettyjä MS/MS-menetelmiä ja oligosakkaridien pilkkoutumisreaktioita MS/MS-analyysissa. Kirjallisuuden perusteella MS/MS-analyysissa oligosakkaridien pilkkoutuminen voi tapahtua joko glykosidisen sidoksen katkeamisella tai monosakkaridirenkaan halkeamisella. Monosakkaridirenkaan pilkkoutumisesta muodostuvia tuoteioneja voidaan käyttää glykosidisen sidoksen aseman määrittämiseen. Kokeellisessa tutkimuksessa selvitettiin aluksi monosakkaridirakenteiltaan isomeerisilla disakkaridimalliaineilla glykosidisen sidoksen sijainnin vaikutus disakkaridin pilkkoutumiseen MS/MS-analyysissa. Tämän jälkeen pyrittiin löytämään tunnetuista tri- ja tetrasakkaridimalliaineista näitä eri sidoksille tyypillisiä tuoteionien jakaumia. Tunnettujen tri- ja tetrasakkaridien pilkkoutuminen yhdenmukaisesti disakkaridien pilkkoutumisen kanssa antaisi mahdollisuuden pitkäketjuisempien oligosakkaridien glykosidisten sidosten tunnistamiseen sovelletulla MS/MS-menetelmällä. MS/MS-analyysit tehtiin ioniloukkumassadetektorilaitteistolla käyttäen sähkösumutusionisaatiota (ESI). Oligosakkaridit määritettiin positiivisella ionisaatiolla litium- ja natriumaddukti-ioneina ja negatiivisella ionisaatiolla kloridiaddukti-ioneina. Vertaamalla tri- ja tetrasakkarideista MS/MS-analyyseissa muodostuneita tuoteioneja disakkarideista muodostuneisiin tuoteioneihin, voitiin sekä positiivisella että negatiivisella ionisaatiolla määrittää oligosakkaridin pelkistävän pään sidoksen asema. Negatiivisella ionisaatiolla tri- ja tetrasakkarideista muodostuneista tuoteioneista voitiin määrittää myös muiden kuin pelkistävän pään sidosten asemia. Positiivisella ionisaatiolla muiden sidosten määrittäminen ei ollut mahdollista, koska rengasfragmentti-ioneja muodostui pääosin oligosakkaridin pelkistävästä päästä. Glykosidisen sidoksen katkeamisesta muodostuneet tuoteionit analysoitiin edelleen MS3-analyysilla. MS3-analyysissa muodostuneista tuoteioneista ei voitu tulkita sidosten asemia, koska lähtöionit koostuivat sekä terminaalisen että pelkistävän pään isomeerisista ioneista.
Resumo:
THE study of swirling boundary layers is of considerable importance in many rotodynamic machines such as rockets, jet engines, swirl generators, swirl atomizers, arc heaters, etc. For example, the introduction of swirl in a flow acceleration device such as a nozzle in a rocket engine promises efficient mass flow control. In nuclear rockets, swirl is used to retain the uranium atoms in the rocket chamber. With these applications in mind, Back1 and Muthanna and Nath2 have obtained the similarity solutions for a low-speed three-dimensional steady laminar compressible boundary layer with swirl inside an axisymmetric surface of variable cross section. The aim of the present analysis is to study the effect of massive blowing rates on the unsteady laminar swirling compressible boundary-layer flow of an axisymmetric body of arbitrary cross section when the freestream velocity and blowing rate vary with time. The type of swirl considered here is that of a free vortex superimposed on the longitudinal flow of a compressible fluid with variable properties. The analysis is applicable to external flow over a body as well as internal flow along a surface. For the case of external flow, strong blowing can have significant use in cooling the surface of hypervelocity vehicles, particularly when ablation occurs under large aerodynamic or radiative heating, but there may not be such an important application of strong blowing in the case of internal flow. The governing partial differential equations have been solved numerically using an implicit finite difference scheme with a quasilinearization technique.3 High temperature gas effects, such as radiation, dissociation, and ionization, etc., are not investigated. The nomenclature is usually that of Ref. 4 and is listed in the full paper.
Resumo:
We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).
Resumo:
In this contribution, we discuss a total cross-section model which can be applied to both photon and purely hadronic processes. We find that the model can reproduce photo-production cross-sections, as well as extrapolations of gamma p processes to gamma p using vector meson dominance models, with minimal modifications from the proton case.
Resumo:
In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.
Resumo:
We discuss expectations for the total and inelastic cross sections at LHC CM energies root s = 7 TeV and 14 TeV obtained in an eikonal minijet model augmented by soft gluon k(t)-resummation, which we describe in some detail. We present a band of predictions which encompass recent LHC data and suggest that the inelastic cross section described by two-channel eikonal models include only uncorrelated processes. We show that this interpretation of the model is supported by the LHC data.