987 resultados para Atlantic Union (Proposed)
Resumo:
The analysis of remotely sensed altimeter data and in situ measurements shows that ERS 2 radar can monitor the ocean permanent thermocline from space. The remotely sensed sea level anomaly data account for similar to 2/3 of the temperature variance or vertical displacement of isotherms at a depth of similar to 550 m in the Subtropical North Atlantic Ocean near 32.5 degree N. This depth corresponds closely to the region of maximum temperature gradient in the permanent thermocline where near semi-annual internal vertical displacements reach 200 to 300 m. The gradient of the altimeter sea level anomaly data correlates well with measured ocean currents to a depth of 750 m. It is shown that observations from space can account for similar to 3/4 of the variance of ocean currents measured in situ in the permanent thermocline over a 2-y period. The magnification of the permanent thermocline displacement with respect to the displacement of the sea surface was determined as - x650 and gives a measure of the ratio of barotropic to baroclinic decay scale of geostrophic current with depth. The overall results are used to interpret an eight year altimeter data tie series in the Subtropical North Atlantic at 32.5 degree N which shows a dominant wave or eddy period near 200 days, rather than semi-annual and increases in energy propagating westward in 1995 (west of 25 degree W). The effects of rapid North Atlantic Oscillation climate change on ocean circulation are discussed. The altimeter data for the Atlantic were Fourier analysed. It is shown how the annual and semi-annual components relate to the seasonal maximum cholorophyll-a SeaWiFS signal in tropical and equatorial regions due to the lifting of the thermocline caused by seasonally varying ocean currents forced by wind stress.
Resumo:
Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.
Resumo:
Accurate identification of stock boundaries is essential for efficient fisheries management, hence the present study focused on the genetic structure of whiting. To this aim, 488 individuals collected from the southern Bay of Biscay to the southern Norwegian coast were genotyped using seven microsatellites. A low level of genetic structuring was detected in Atlantic waters since only the Bay of Biscay differentiated from more northern samples. The lack of genetic structure along the western margin of the British Isles is consistent with a high level of passive transport of pelagic eggs and larvae due to the combined influence of the North Atlantic Current and the Shelf Edge Current. High levels of dispersal could also occur between the western British Isles and the North Sea through both the branching of the North Atlantic Current into the northern North Sea and from the residual current flowing from the English Channel to the Southern Bight. In contrast, a significant genetic structure was identified within the North Sea, and this may be associated with the complex oceanography of this basin and retention systems reducing larval dispersal. In addition, considering also genetic, phenotypic and tag-recapture data collected on whiting, a learned homing behaviour of adults toward spawning areas may be hypothesised.
Resumo:
Plankton collected by the Continuous Plankton Recorder (CPR) survey were investigated for the English Channel, Celtic Sea and Bay of Biscay from 1979 to 1995. The main goal was to study the relationship between climate and plankton and to understand the factors influencing it. In order to take into account the spatial and temporal structure of biological data, a three-mode principal component analysis (PCA) was developed. It not only identified 5 zones characterised by their similar biological composition and by the seasonal and inter-annual evolution of the plankton, it also made species associations based on their location and year-to-year change. The studied species have stronger year-to-year fluctuations in abundance over the English Channel and Celtic Sea than the species offshore in the Bay of Biscay. The changes in abundance of plankton in the English Channel are negatively related to inter-annual changes of climatic conditions from December to March (North Atlantic Oscillation [NAO] index and air temperature). Thus, the negative relationship shown by Fromentin and Planque (1996; Mar Ecol Prog Ser 134:111-118) between year-to-year changes of Calanus finmarchicus abundance in the northern North Atlantic and North Sea and NAO was also found for the most abundant copepods in the Channel. However, the hypothesis proposed to explain the plankton/NAO relationship is different for this region and a new hypothesis is proposed. In the Celtic Sea, a relationship between the planktonic assemblage and the air temperature was detected, but it is weaker than for the English Channel. No relationship was found for the Bay of Biscay. Thus, the local physical environment and the biological composition of these zones appear to modify the relationship between winter climatic conditions and the year-to-year fluctuations of the studied planktonic species. This shows, therefore, that the relationship between climate and plankton is difficult to generalise.
Resumo:
A marked increase in global temperature over the last century was confirmed by the second Assessment Report of the Intergovernmental Panel on Climate Change. Here we report significant positive and negative linear trends from 1948 to 1995 in phytoplankton measured by the Continuous Plankton Recorder survey in the northeast Atlantic and North Sea that might reflect a response to changing climate on a timescale of decades. Spreading of unusually cold waters from the Arctic might have contributed to the decline in phytoplankton north of 59o N. Further south, phytoplankton season length and abundance seem to have increased.
Resumo:
Centropages chierchiae and Temora stylifera occurred rarely in the Continuous Plankton Recorder (CPR) survey in the Bay of Biscay, Celtic Sea, and English Channel before 1988. By 2000 they were found frequently and in abundance. The seasonal cycles of abundance of these species differ, C. chierchiae occurring mainly in the summer while T. stylifera was found most frequently in late autumn or winter towards the northern limits of its distribution. The increase in abundance of both species is related to temperature. However, in the years when it was found in the samples, the frequency of occurrence of C. chierchiae was correlated positively with the strength of the shelf edge current and negatively with the North Atlantic Oscillation (NAO) while the reverse was true for T. stylifera.
Resumo:
A pinnotherid zoea taken in a plankton sample from the Selvagens Islands during the TFMCBM/SELVAGENS’2000 Cruise, organized by the Natural Sciences Museum of Tenerife (Canary Islands), differs from previously described zoeas of the family. The specimen has dorsal and lateral spines but no rostrum, a combination of characters not previously described from pinnotherid zoeas. The lateral spines originate behind the upper part of the eye, unlike all previously described Pinnotheridae zoeas where these spines, when present, originate near the ventrolateral margin of the carapace. The specimen is attributed to Afropinnotheres monodi, the only pinnotherid species known from the area with undescribed larvae.
Resumo:
Using data from the CPR survey seven case studies are described that document different spatial and temporal responses in the plankton to hydroclimatic events. Long-term trends in the plankton of the eastern Atlantic and the North Sea over the last five decades are examined. Two of the examples revisit correlations that have been described between copepod abundance in the eastern Atlantic and North Sea and indices of atmospheric variability, the North Atlantic Oscillation index and the Gulf Stream North Wall index. Evidence for an increase in levels of Phytoplankton Colour (a visual index of chlorophyll) on the eastern and western sides of the Atlantic is presented. Changes in three trophic levels and in the hydrodynamics and chemistry of the North Sea circa 1988 are outlined as a regime shift. Two of the case studies emphasise the importance of variability in oceanic advection into shelf seas and the role of western and eastern margin currents at the shelf edge. The plankton appear to be integrating hydrometeorological signals and reflecting basin scale changes in circulation of surface, intermediate and deep waters in part associated with the NAO. The extent to which climatic variability may be contributing to the observed changes in the plankton is discussed with a forecast of potential future ecosystem effects in a climate change scenario.
Resumo:
The Continuous Plankton Recorder (CPR) survey has sampled regularly in the Northwest Atlantic since the early 1960s. Over the last decade there has been a dramatic increase in the abundance of a number of arctic boreal plankton species, notably Calanus hyperboreus (Kroyer), Calanus glacialis (Jaschnov), and Ceratium arcticum, and a southerly shift of the copepod C. hyperboreus in the CPR survey. In 1998, C. hyperboreus was recorded at its farthest position south in the survey, 39 degrees N, off the Georges Bank shelf edge. Other studies have reported similar parallel biological responses on three trophic levels. During the late 1990s, production of Labrador Sea Water (LSW) has been at a high, a direct response to the phase of the North Atlantic Oscillation (NAO). The increase in abundance of these species, up to four standard deviations from the long-term mean, is linked to variability in the hydrography of the area and the driving climatic processes of the North Atlantic.
Resumo:
An overview of the main oceanographic features of the eastern North Atlantic boundary, with emphasis toward the upper layers, is presented. The principal features discussed are: water mass boundaries; forcing by wind, density and tides; topographic features and effects; fronts; upwelling and downwelling; poleward flows; coastal currents; eddies. The occurrence and spatial and seasonal variability of these features is described in five regional sections: Celtic Sea and western English Channel; Bay of Biscay; western Iberia; Gulf of Cadiz; northwest Africa. This paper is intended to provide a base of physical oceanographic knowledge in support of research in fisheries, biological and chemical oceanography, and marine biology.