950 resultados para Assimilation
Resumo:
Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10–20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5–7 (14–16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m−3 is used for the MLD estimation. Using the larger criterion (0.125 kg m−3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.
Resumo:
Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth, upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems.
Resumo:
TIGGE was a major component of the THORPEX (The Observing System Research and Predictability Experiment) research program, whose aim is to accelerate improvements in forecasting high-impact weather. By providing ensemble prediction data from leading operational forecast centers, TIGGE has enhanced collaboration between the research and operational meteorological communities and enabled research studies on a wide range of topics. The paper covers the objective evaluation of the TIGGE data. For a range of forecast parameters, it is shown to be beneficial to combine ensembles from several data providers in a Multi-model Grand Ensemble. Alternative methods to correct systematic errors, including the use of reforecast data, are also discussed. TIGGE data have been used for a range of research studies on predictability and dynamical processes. Tropical cyclones are the most destructive weather systems in the world, and are a focus of multi-model ensemble research. Their extra-tropical transition also has a major impact on skill of mid-latitude forecasts. We also review how TIGGE has added to our understanding of the dynamics of extra-tropical cyclones and storm tracks. Although TIGGE is a research project, it has proved invaluable for the development of products for future operational forecasting. Examples include the forecasting of tropical cyclone tracks, heavy rainfall, strong winds, and flood prediction through coupling hydrological models to ensembles. Finally the paper considers the legacy of TIGGE. We discuss the priorities and key issues in predictability and ensemble forecasting, including the new opportunities of convective-scale ensembles, links with ensemble data assimilation methods, and extension of the range of useful forecast skill.
Resumo:
Ocean–sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent relatively well. However, the ensemble can not be used to get a robust estimate of recent trends in the Arctic sea ice volume. Biases in the reanalyses certainly impact the simulated air–sea fluxes in the polar regions, and questions the suitability of current sea ice reanalyses to initialize seasonal forecasts.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under non-aseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% (w/v). However, 4.0% (w/v) of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% (w/w) per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% (w/w) of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value amongst the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for “second generation” biodiesel
Resumo:
'Macunaíma' (Joaquim Pedro de Andrade, 1969) ends with a shot of blood emerging from the water. This text proposes an approach to this image following a comparison with other films by the same filmmaker: 'Couro de gato' (1960) and 'Os Inconfidentes' (1972). The main thesis is that in these images the aesthetical work with flesh synthesizes the ritual cannibalism and the capitalist one. This synthesis is specified in heroes’ assimilation by power.
Resumo:
This paper describes the development and basic evaluation of decadal predictions produced using the HiGEM coupled climate model. HiGEM is a higher resolution version of the HadGEM1 Met Office Unified Model. The horizontal resolution in HiGEM has been increased to 1.25◦ × 0.83◦ in longitude and latitude for the atmosphere, and 1/3◦ × 1/3◦ globally for the ocean. The HiGEM decadal predictions are initialised using an anomaly assimilation scheme that relaxes anomalies of ocean temperature and salinity to observed anomalies. 10 year hindcasts are produced for 10 start dates (1960, 1965,..., 2000, 2005). To determine the relative contributions to prediction skill from initial conditions and external forcing, the HiGEM decadal predictions are compared to uninitialised HiGEM transient experiments. The HiGEM decadal predictions have substantial skill for predictions of annual mean surface air temperature and 100 m upper ocean temperature. For lead times up to 10 years, anomaly correlations (ACC) over large areas of the North Atlantic Ocean, the Western Pacific Ocean and the Indian Ocean exceed values of 0.6. Initialisation of the HiGEM decadal predictions significantly increases skill over regions of the Atlantic Ocean,the Maritime Continent and regions of the subtropical North and South Pacific Ocean. In particular, HiGEM produces skillful predictions of the North Atlantic subpolar gyre for up to 4 years lead time (with ACC > 0.7), which are significantly larger than the uninitialised HiGEM transient experiments.
Resumo:
In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyja allajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7–10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5∘ × 0.5∘ latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5∘× 2.5∘ latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.
Resumo:
Atmosphere only and ocean only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, non-linearity and observation density of the respective systems. Typical window lengths are 6-12 hours for the atmosphere and 2-10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a more balanced coupled state. This paper investigates how extending the window length in the presence of model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA with differing degrees of coupling. Results are illustrated using an idealized single column model of the coupled atmosphere-ocean system. It is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency between the coupled model used in the outer loop and uncoupled models used in the inner loop.
Resumo:
The stratospheric mean-meridional circulation (MMC) and eddy mixing are compared among six meteorological reanalysis data sets: NCEP-NCAR, NCEP-CFSR, ERA-40, ERA-Interim, JRA-25, and JRA-55 for the period 1979–2012. The reanalysis data sets produced using advanced systems (i.e., NCEP-CFSR, ERA-Interim, and JRA-55) generally reveal a weaker MMC in the Northern Hemisphere (NH) compared with those produced using older systems (i.e., NCEP/NCAR, ERA-40, and JRA-25). The mean mixing strength differs largely among the data products. In the NH lower stratosphere, the contribution of planetary-scale mixing is larger in the new data sets than in the old data sets, whereas that of small-scale mixing is weaker in the new data sets. Conventional data assimilation techniques introduce analysis increments without maintaining physical balance, which may have caused an overly strong MMC and spurious small-scale eddies in the old data sets. At the NH mid-latitudes, only ERA-Interim reveals a weakening MMC trend in the deep branch of the Brewer–Dobson circulation (BDC). The relative importance of the eddy mixing compared with the mean-meridional transport in the subtropical lower stratosphere shows increasing trends in ERA-Interim and JRA-55; this together with the weakened MMC in the deep branch may imply an increasing age-of-air (AoA) in the NH middle stratosphere in ERA-Interim. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them.
Resumo:
The General Ocean Turbulence Model (GOTM) is applied to the diagnostic turbulence field of the mixing layer (ML) over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23 degrees W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.
Resumo:
This paper presents an analysis of ground-based Aerosol Optical Depth (AOD) observations by the Aerosol Robotic Network (AERONET) in South America from 2001 to 2007 in comparison with the satellite AOD product of Moderate Resolution Imaging Spectroradiometer (MODIS), aboard TERRA and AQUA satellites. Data of 12 observation sites were used with primary interest in AERONET sites located in or downwind of areas with high biomass burning activity and with measurements available for the full time range. Fires cause the predominant carbonaceous aerosol emission signal during the dry season in South America and are therefore a special focus of this study. Interannual and seasonal behavior of the observed AOD at different sites were investigated, showing clear differences between purely fire and urban influenced sites. An intercomparison of AERONET and MODIS AOD annual correlations revealed that neither an interannual long-term trend may be observed nor that correlations differ significantly owing to different overpass times of TERRA and AQUA. Individual anisotropic representativity areas for each AERONET site were derived by correlating daily AOD of each site for all years with available individual MODIS AOD pixels gridded to 1 degrees x 1 degrees. Results showed that for many sites a good AOD correlation (R(2) > 0.5) persists for large, often strongly anisotropic, areas. The climatological areas of common regional aerosol regimes often extend over several hundreds of kilometers, sometimes far across national boundaries. As a practical application, these strongly inhomogeneous and anisotropic areas of influence are being implemented in the tropospheric aerosol data assimilation system of the Coupled Chemistry-Aerosol-Tracer Transport Model coupled to the Brazilian Regional Atmospheric Modeling System (CCATT-BRAMS) at the Brazilian National Institute for Space Research (INPE). This new information promises an improved exploitation of local site sampling and, thus, chemical weather forecast.
Resumo:
A particle filter method is presented for the discrete-time filtering problem with nonlinear ItA ` stochastic ordinary differential equations (SODE) with additive noise supposed to be analytically integrable as a function of the underlying vector-Wiener process and time. The Diffusion Kernel Filter is arrived at by a parametrization of small noise-driven state fluctuations within branches of prediction and a local use of this parametrization in the Bootstrap Filter. The method applies for small noise and short prediction steps. With explicit numerical integrators, the operations count in the Diffusion Kernel Filter is shown to be smaller than in the Bootstrap Filter whenever the initial state for the prediction step has sufficiently few moments. The established parametrization is a dual-formula for the analysis of sensitivity to gaussian-initial perturbations and the analysis of sensitivity to noise-perturbations, in deterministic models, showing in particular how the stability of a deterministic dynamics is modeled by noise on short times and how the diffusion matrix of an SODE should be modeled (i.e. defined) for a gaussian-initial deterministic problem to be cast into an SODE problem. From it, a novel definition of prediction may be proposed that coincides with the deterministic path within the branch of prediction whose information entropy at the end of the prediction step is closest to the average information entropy over all branches. Tests are made with the Lorenz-63 equations, showing good results both for the filter and the definition of prediction.
Resumo:
Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO(2) concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana: a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate. (C) 2010 Elsevier GmbH. All rights reserved.