920 resultados para Assemblages of marine sponges


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intertidal macrobenthic faunal assemblages of a dual seagrass/callianassid-structured sandflat system were investigated in subtropical Moreton Bay, Queensland. Consistently across all 20 stations, the gastropod-dominated seagrass supported greater abundance (2.5×) and species richness (2×) than the amphipod-dominated sandflat. There was no evidence of along-shore or up-shore variation in the overall assemblage properties such as total abundance, species richness or diversity within either habitat type, except for variation in sandflat abundance between sites. But seagrass and sandflat assemblages both varied significantly in composition from site to site, and seagrass assemblage composition also varied with shore height. Shore height and site, however, only accounted for ≤41% of total variation. The two faunal assemblages showed a Bray–Curtis dissimilarity of 97.7% and within-habitat similarities of <20%. There was no consistency in distribution of greater diversity, dominance or evenness. No differential between any assemblage features in adjacent sandflat and seagrass samples changed with shore height, supporting hypotheses that such differentials are not maintained by predation. Macrofaunal species richness and diversity were closely coupled within sandflat stations but were uncoupled within seagrass ones, questioning the value of diversity as a comparative measure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine sponges have never been directly examined with respect to the presence of viruses or their potential involvement in horizontal gene transfer. Here we demonstrate for the first time, the presence of viruses in the marine sponge Hymeniacidon perlevis. Moreover, bacterial 16s rDNA was detected in DNA isolated from these viruses, indicating that phage-derived transduction appears to occur in H. perlevis. Phylogenetic analysis revealed that bacterial 16s rDNA isolated from sponge-derived viral and total DNA differed significantly, indicating that not all species are equally involved in transduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distributions of marine fauna and of pollution are both highly structured, and thus the resulting high levels of autocorrelation may invalidate conclusions based on classical statistical approaches. Here we analyse the close correlation observed between proxies for the disturbance associated with gas extraction activities and amphipod distribution patterns around four hydrocarbon platforms. We quantified the amount of variation independently accounted for by natural environmental variables, proxies for the disturbance caused by platforms, and spatial autocorrelation. This allowed us to demonstrate how each of these three factors significantly affects the community structure of amphipods. Sophisticated statistical techniques are required when taking into account spatial autocorrelation: nevertheless our data demonstrate that this approach not only enables the formulation of robust statistical inferences but also provides a much deeper understanding of the subtle interactions between human disturbance and natural factors affecting the structure of marine invertebrates communities. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fungi Aspergillus sydowii Ce15, Aspergillus sydowii Ce19, Aspergillus sydowii Gc12, Bionectria sp. Ce5, Penicillium miczynskii Gc5, Penicillium raistrickii Ce16 and Trichoderma sp. Gc1, isolated from marine sponges Geodia corticostylifera and Chelonaplysylla erecta, were evaluated for their ability to grow in the presence of DDD pesticide. Increasing concentrations of DDD pesticide, i.e., 5.0 mg (1.56 x 10(-12) mmol), 10.0 mg (3.12 x 10(-2) mmol) and 15.0 mg (4.68 x 10(-2) mmol) in solid and liquid culture media were tested. The fungi Trichoderma sp. Gc1 and Penicillium miczynskii Gc5 were able to grow in the presence of up to 15.0 mg of DDD, suggesting their potential for biodegradation. A 100% degradation of DDD was attained in liquid culture medium when Trichoderma sp. Gc1 was previously cultivated for 5 days and supplemented with 5.0 mg of DDD in the presence of hydrogen peroxide. However, the quantitative analysis showed that DDD was accumulated on mycelium and biodegradation level reached a maximum value of 58% after 14 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the microbial diversity associated with marine macroorganisms, despite the vital role microorganisms may play in marine ecosystems. The aim of the present study was to investigate the diversity of bacteria and fungi isolated from eight marine invertebrate and one algae samples. Data derived from ARDRA and sequencing analyses allowed the identification of marine-derived microorganisms isolated from those samples. Microbial strains identified up to the genus level revealed 144 distinct ribotypes out of 256 fungal strains and 158 distinct ribotypes out of 181 bacterial strains. Filamentous fungi were distributed among 24 different genera belonging to Ascomycota, Zygomycota and Basidiomycota, some of which had never been reported in the literature as marine invertebrate-inhabiting fungi (Pestalotiopsis, Xylaria, Botrysphaeria and Cunnninghamella). Bacterial isolates were affiliated to 41 different genera, being Bacillus, Ruegeria, Micrococcus, Pseudovibrio and Staphylococcus the most abundant ones. Results revealed an unexpected high microbial diversity associated to the macroorganisms which have been collected and suggested the selection of certain microbial taxonomic groups according to the host. The combined data gathered from this investigation contribute to broaden the knowledge of microbial diversity associated to marine macroorganisms, including as a promising source for the discovery of new natural products. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of time averaging on the fossil record of soft-substrate marine faunas have been investigated in great detail, but the temporal resolution of epibiont assemblages has been inferred only from limited-duration deployment experiments. Individually dated shells provide insight into the temporal resolution of epibiont assemblages and the taphonomic history of their hosts over decades to centuries. Epibiont abundance and richness were evaluated for 86 dated valves of the rhynchonelliform brachiopod Bouchardia rosea collected from the inner shelf. Maximum abundance occurred on shells less than 400 yr old, and maximum diversity was attained within a century. Taphonomic evidence does not support models of live-host colonization, net accumulation, or erasure of epibionts over time. Encrustation appears to have occurred during a brief interval between host death and burial, with no evidence of significant recolonization of exhumed shells. Epibiont assemblages of individually dated shells preserve ecological snapshots, despite host-shell time averaging, and may record long-term ecological changes or anthropogenic environmental changes. Unless the ages of individual shells are directly estimated, however, pooling shells of different ages artificially reduces the temporal resolution of their encrusting assemblages to that of their hosts, an artifact of analytical time averaging. © 2006 by The University of Chicago. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole cells of the marine fungi Aspergillus sydowii Gc12, Penicillium raistrickii Ce16, P. miczynskii Gc5, and Trichoderma sp. Gc1, isolated from marine sponges of the South Atlantic Ocean (Brazil), have been screened for the enzymatic resolution of (+/-)-2-(benzyloxymethyl)oxirane (benzyl glycidyl ether; 1). Whole cells of A. sydowii Gc12 catalyzed the enzymatic hydrolysis of (R,S)-1 to yield (R)-1 with an enantiomeric excess (ee) of 24-46% and 3-(benzyloxy)propane-1,2-diol (2) with ee values < 10%. In contrast, whole cells of Trichoderma sp. Gc1 afforded (S)-1 with ee values up to 60% and yields up to 39%, together with (R)-2 in 25% yield and an ee of 32%. This is the first published example of the hydrolysis of 1 by whole cells of marine fungi isolated from the South Atlantic Ocean. The hydrolases from the two studied fungi exhibited complementary regioselectivity in opening the epoxide ring of racemic 1, with those of A. sydowii Gc12 showing an (S) preference and those of Trichoderma sp. Gc1 presenting an (R) preference for the substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat structure is known to influence the abundance of fishes on temperate reefs. Biotic interactions play a major role in determining the distribution and abundance of species. The significance of these forces in affecting the abundance of fishes may hinge on the presence of organisms that either create or alter habitat. On temperate reefs, for example, macroalgae are considered autogenic ecosystem engineers because they control resource availability to other species through their physical structure and provide much of the structure used by fish. On both coral and temperate reefs, small cryptic reef fishes may comprise up to half of the fish numbers and constitute a diverse community containing many specialized species. Small cryptic fishes (<100 mm total length) may be responsible for the passage of 57% of the energy flow and constitute ca. 35% of the overall reef fish biomass on coral reefs. These benthic fish exploit restricted habitats where food and shelter are obtained in, or in relation to, conditions of substrate complexity and/or restricted living space. A range of mechanisms has been proposed to account for the diversity and the abundance of small fishes: (1) lifehistory strategies that promote short generation times, (2) habitat associations and behaviour that reduce predation and (3) resource partitioning that allows small species to coexist with larger competitors. Despite their abundance and potential importance within reef systems, little is known of the community ecology of cryptic fishes. Specifically on habitat associations many theories suggested a not clear direction on this subject. My research contributes to the development of marine fish ecology by addressing the effects of habitat characteristics upon distribution of cryptobenthic fish assemblages. My focus was on the important shallow, coastal ecosystems that often serve as nursery habitat for many fish and where different type of habitat is likely to both play important roles in organism distribution and survival. My research included three related studies: (1) identification of structuring forces on cryptic fish assemblages, such as physical and biological forcing; (2) macroalgae as potential tools for cryptic fish and identification of different habitat feature that could explain cryptic fish assemblages distribution; (3) canopy formers loss: consequences on cryptic fish and relationship with benthos modifications. I found that: (1) cryptic fish assemblages differ between landward and seaward sides of coastal breakwaters in Adriatic Sea. These differences are explained by 50% of the habitat characteristics on two sides, mainly due to presence of the Codium fragile, sand and oyster assemblages. Microhabitat structure influence cryptic fish assemblages. (2) Different habitat support different cryptic fish assemblages. High heterogeneity on benthic assemblages reflect different fish assemblages. Biogenic components that explain different and diverse cryptic fish assemblages are: anemonia bed, mussel bed, macroalgal stands and Cystoseira barbata, as canopy formers. (3) Canopy forming loss is not relevant in structuring directly cryptic fish assemblages. A removal of canopy forming algae did not affect the structure of cryptic fish assemblages. Canopy formers algae on Conero cliff, does not seem to act as structuring force, probably due to its regressive status. In conclusion, cryptic fish have been shown to have species-specific associations with habitat features relating to the biological and non biological components afforded by fish. Canopy formers algae do not explain cryptic fish assemblages distribution and the results of this study and information from the literature (both from the Mediterranean Sea and elsewhere) show that there are no univocal responses of fish assemblages. Further exanimations on an non regressive status of Cystoseira canopy habitat are needed to define and evaluate the relationship between canopy formers and fish on Mediterranean sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis describes the molluscan biodiversity of the infralittoral off-shore reefs in the "Secche di Tor Paterno" marine protected area lying in the Central Tyrrhenian Sea off the coasts of Lazio south of Roma. Data originate from underwater sampling activities carried out by SCUBA diving in four biocoenoses: Posidonia oceanica leaves and rhizomes, coralligenous concretions and detritic pools. The representativeness of molluscs as descriptors of biocoenoses is evaluated by preliminary comparisons with data about Polychaeta, Pleocyemata (Crustacea) and Brachiopoda obtained in the same survey. The malacocoenoses of the four biocoenoses are treated in detail. Then data are compared with other data sets to assess differences and similarities with other communities. The agreement between death and living assemblages in the reefs is evaluated for the Posidonia oceanica and the coralligenous biocoenosis and was carried out by a set of standard metrics and some benthic ecology methods. Molluscs perform very well as descriptors of biocoenoses, better than the other phyla. The molluscan assemblages of the reefs are very rich in species despite richness is mainly concentrated in the coralligenous and in the rhizomes of Posidonia oceanica. The leaves of Posidonia oceanica host a rather poor assemblage. Detritic pools host a poor but peculiar species assemblage. The dead-live agreement showed that death assemblages are highly representative of sediments of nearby biocoenoses as a result of low bottom transport. Fidelity metrics suggest a good agreement between the living and death assemblages when species richness and taxonomic composition are considered. The study suggests that fidelity is lower when considering the species dominance. These differences could be associated to the trophism of species and possibly to the species life span.