900 resultados para Artificial intelligence -- Data processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ASTIA document AD 288 636.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there is no structured data standard for representing elements commonly found in transmedia fictional universes. There are websites dedicated to individual universes, however, information found on these sites separates the various formats into books, movies, comics, etc.; concentrate on only the bibliographic aspects of the material; and are only full-text searchable. We have created an ontological model that will allow researchers, fans, brand managers, and creators to search for and retrieve the information contained in these worlds based on how they are structured. We conducted a domain analysis and user studies based on the contents of Harry Potter, Lord of the Rings, the Marvel Universe, and Star Wars in order to build a new model using the Ontology Web Language (OWL) and an artificial intelligence reasoning engine. This model can infer connections between characters, elements of power, items, places, events, etc. This model will facilitate better search and retrieval of the information contained within these vast story universes for all users interested in them. The result of this project is and OWL ontology that is intuitive for users; can be used by AI systems; and has been updated to reflect real user needs based on user research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expectation-maximization (EM) algorithm has been of considerable interest in recent years as the basis for various algorithms in application areas of neural networks such as pattern recognition. However, there exists some misconceptions concerning its application to neural networks. In this paper, we clarify these misconceptions and consider how the EM algorithm can be adopted to train multilayer perceptron (MLP) and mixture of experts (ME) networks in applications to multiclass classification. We identify some situations where the application of the EM algorithm to train MLP networks may be of limited value and discuss some ways of handling the difficulties. For ME networks, it is reported in the literature that networks trained by the EM algorithm using iteratively reweighted least squares (IRLS) algorithm in the inner loop of the M-step, often performed poorly in multiclass classification. However, we found that the convergence of the IRLS algorithm is stable and that the log likelihood is monotonic increasing when a learning rate smaller than one is adopted. Also, we propose the use of an expectation-conditional maximization (ECM) algorithm to train ME networks. Its performance is demonstrated to be superior to the IRLS algorithm on some simulated and real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and intelligent eLearning systems. Reiter's diagnosis theory, described by first-order sentences, has been attracting much attention in this field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and the uncertainty of knowledge, e. g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of Reiter's consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world eLearning case is described to demonstrate the application of our diagnostic framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interconnecting business processes across systems and organisations is considered to provide significant benefits, such as greater process transparency, higher degrees of integration, facilitation of communication, and consequently higher throughput in a given time interval. However, to achieve these benefits requires tackling constraints. In the context of this paper these are privacy-requirements of the involved workflows and their mutual dependencies. Workflow views are a promising conceptional approach to address the issue of privacy; however this approach requires addressing the issue of interdependencies between workflow view and adjacent private workflow. In this paper we focus on three aspects concerning the support for execution of cross-organisational workflows that have been modelled with a workflow view approach: (i) communication between the entities of a view-based workflow model, (ii) their impact on an extended workflow engine, and (iii) the design of a cross-organisational workflow architecture (CWA). We consider communication aspects in terms of state dependencies and control flow dependencies. We propose to tightly couple private workflow and workflow view with state dependencies, whilst to loosely couple workflow views with control flow dependencies. We introduce a Petri-Net-based state transition approach that binds states of private workflow tasks to their adjacent workflow view-task. On the basis of these communication aspects we develop a CWA for view-based cross-organisational workflow execution. Its concepts are valid for mediated and unmediated interactions and express no choice of a particular technology. The concepts are demonstrated by a scenario, run by two extended workflow management systems. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cox's theorem states that, under certain assumptions, any measure of belief is isomorphic to a probability measure. This theorem, although intended as a justification of the subjectivist interpretation of probability theory, is sometimes presented as an argument for more controversial theses. Of particular interest is the thesis that the only coherent means of representing uncertainty is via the probability calculus. In this paper I examine the logical assumptions of Cox's theorem and I show how these impinge on the philosophical conclusions thought to be supported by the theorem. I show that the more controversial thesis is not supported by Cox's theorem. (C) 2003 Elsevier Inc. All rights reserved.