951 resultados para Array Signal Processing
Resumo:
Users of cochlear implants (auditory aids, which stimulate the auditory nerve electrically at the inner ear) often suffer from poor speech understanding in noise. We evaluate a small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. The system is evaluated in simulated and real, anechoic and reverberant environments. Results from simulations show improvements of 3.4 to 9.3 dB in signal to noise ratio for rooms with realistic reverberation and more than 18 dB under anechoic conditions. Speech understanding in noise is measured in 6 adult cochlear implant users in a reverberant room, showing average improvements of 7.9–9.6 dB, when compared to a single omnidirectional microphone or 1.3–5.6 dB, when compared to a simple directional two-microphone device. Subjective evaluation in a cafeteria at lunchtime shows a preference of the cochlear implant users for the evaluated device in terms of speech understanding and sound quality.
Resumo:
Transformer protection is one of the most challenging applications within the power system protective relay field. Transformers with a capacity rating exceeding 10 MVA are usually protected using differential current relays. Transformers are an aging and vulnerable bottleneck in the present power grid; therefore, quick fault detection and corresponding transformer de-energization is the key element in minimizing transformer damage. Present differential current relays are based on digital signal processing (DSP). They combine DSP phasor estimation and protective-logic-based decision making. The limitations of existing DSP-based differential current relays must be identified to determine the best protection options for sensitive and quick fault detection. The development, implementation, and evaluation of a DSP differential current relay is detailed. The overall goal is to make fault detection faster without compromising secure and safe transformer operation. A detailed background on the DSP differential current relay is provided. Then different DSP phasor estimation filters are implemented and evaluated based on their ability to extract desired frequency components from the measured current signal quickly and accurately. The main focus of the phasor estimation evaluation is to identify the difference between using non-recursive and recursive filtering methods. Then the protective logic of the DSP differential current relay is implemented and required settings made in accordance with transformer application. Finally, the DSP differential current relay will be evaluated using available transformer models within the ATP simulation environment. Recursive filtering methods were found to have significant advantage over non-recursive filtering methods when evaluated individually and when applied in the DSP differential relay. Recursive filtering methods can be up to 50% faster than non-recursive methods, but can cause false trip due to overshoot if the only objective is speed. The relay sensitivity is however independent of filtering method and depends on the settings of the relay’s differential characteristics (pickup threshold and percent slope).
Resumo:
Indoor positioning is the backbone of many advanced intra-logistic applications. As opposed to unified outdoor satellite positioning systems, there are many different technical approaches to indoor positioning. Depending on the application, there are different trade-offs between accuracy, range, and costs. In this paper we present a new concept for a 4-degree-of-freedom (4-DOF) positioning system to be used for vehicle tracing in a logistic facility. The system employs optical data transmission between active infrastructure and receiver devices. Compared to existing systems, these optical technologies promise to achieve better accuracy at lower costs. We will introduce the positioning algorithm and an experimental setup of the system.
Resumo:
In this paper, the well-known method of frames approach to the signal decomposition problem is reformulated as a certain bilevel goal-attainment linear least squares problem. As a consequence, a numerically robust variant of the method, named approximating method of frames, is proposed on the basis of a certain minimal Euclidean norm approximating splitting pseudo-iteration-wise method.
Resumo:
This paper addresses the problem of service development based on GSM handset signaling. The aim is to achieve this goal without the participation of the users, which requires the use of a passive GSM receiver on the uplink. Since no tool for GSM uplink capturing was available, we developed a new method that can synchronize to multiple mobile devices by simply overhearing traffic between them and the network. Our work includes the implementation of modules for signal recovery, message reconstruction and parsing. The method has been validated against a benchmark solution on GSM downlink and independently evaluated on uplink channels. Initial evaluations show up to 99% success rate in message decoding, which is a very promising result. Moreover, we conducted measurements that reveal insights on the impact of signal power on the capturing performance and investigate possible reactive measures.
Resumo:
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is responsible for the highest number of rhythm-related disorders and cardioembolic strokes worldwide. Intracardiac signal analysis during the onset of paroxysmal AF led to the discovery of pulmonary vein as a triggering source of AF, which has led to the development of pulmonary vein ablation--an established curative therapy for drug-resistant AF. Complex, multicomponent and rapid electrical activity widely involving the atrial substrate characterizes persistent/permanent AF. Widespread nature of the problem and complexity of signals in persistent AF reduce the success rate of ablation therapy. Although signal processing applied to extraction of relevant features from these complex electrograms has helped to improve the efficacy of ablation therapy in persistent/permanent AF, improved understanding of complex signals should help to identify sources of AF and further increase the success rate of ablation therapy.
Resumo:
Clock synchronization is critical for the operation of a distributed wireless network system. In this paper we investigate on a method able to evaluate in real time the synchronization offset between devices down to nanoseconds (as needed for positioning). The method is inspired by signal processing algorithms and relies on fine-grain time information obtained during the reconstruction of the signal at the receiver. Applying the method to a GPS-synchronized system show that GPS-based synchronization has high accuracy potential but still suffers from short-term clock drift, which limits the achievable localization error.
Resumo:
We investigate the problem of distributed sensors' failure detection in networks with a small number of defective sensors, whose measurements differ significantly from the neighbor measurements. We build on the sparse nature of the binary sensor failure signals to propose a novel distributed detection algorithm based on gossip mechanisms and on Group Testing (GT), where the latter has been used so far in centralized detection problems. The new distributed GT algorithm estimates the set of scattered defective sensors with a low complexity distance decoder from a small number of linearly independent binary messages exchanged by the sensors. We first consider networks with one defective sensor and determine the minimal number of linearly independent messages needed for its detection with high probability. We then extend our study to the multiple defective sensors detection by modifying appropriately the message exchange protocol and the decoding procedure. We show that, for small and medium sized networks, the number of messages required for successful detection is actually smaller than the minimal number computed theoretically. Finally, simulations demonstrate that the proposed method outperforms methods based on random walks in terms of both detection performance and convergence rate.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.
Resumo:
The objective of this longitudinal study, conducted in a neonatal intensive care unit, was to characterize the response to pain of high-risk very low birth weight infants (<1,500 g) from 23 to 38 weeks post-menstrual age (PMA) by measuring heart rate variability (HRV). Heart period data were recorded before, during, and after a heel lanced or wrist venipunctured blood draw for routine clinical evaluation. Pain response to the blood draw procedure and age-related changes of HRV in low-frequency and high-frequency bands were modeled with linear mixed-effects models. HRV in both bands decreased during pain, followed by a recovery to near-baseline levels. Venipuncture and mechanical ventilation were factors that attenuated the HRV response to pain. HRV at the baseline increased with post-menstrual age but the growth rate of high-frequency power was reduced in mechanically ventilated infants. There was some evidence that low-frequency HRV response to pain improved with advancing PMA.
Resumo:
Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.