972 resultados para Arndt, Ernst MoritzArndt, Ernst MoritzErnst MoritzArndt


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paralysis-by-analysis phenomenon, i.e., attending to the execution of one's movement impairs performance, has gathered a lot of attention over recent years (see Wulf, 2007, for a review). Explanations of this phenomenon, e.g., the hypotheses of constrained action (Wulf et al., 2001) or of step-by-step execution (Masters, 1992; Beilock et al., 2002), however, do not refer to the level of underlying mechanisms on the level of sensorimotor control. For this purpose, a “nodal-point hypothesis” is presented here with the core assumption that skilled motor behavior is internally based on sensorimotor chains of nodal points, that attending to intermediate nodal points leads to a muscular re-freezing of the motor system at exactly and exclusively these points in time, and that this re-freezing is accompanied by the disruption of compensatory processes, resulting in an overall decrease of motor performance. Two experiments, on lever sequencing and basketball free throws, respectively, are reported that successfully tested these time-referenced predictions, i.e., showing that muscular activity is selectively increased and compensatory variability selectively decreased at movement-related nodal points if these points are in the focus of attention.