978 resultados para Approximate Bayesian Computation
Resumo:
An approximate theory for steady irrotational flow through a cascade of thin cambered airfoils is developed. Isolated thin airfoils have only slight camber is most applications, and the well known methods that replace the source and vorticity distributions of the curved camber line by similar distributions on the straight chord line are adequate. In cascades, however, the camber is usually appreciable, and significant errors are introduced if the vorticity and source distributions on the camber line are approximated by the same distribution on the chord line.
The calculation of the flow field becomes very clumsy in practice if the vorticity and source distributions are not confined to a straight line. A new method is proposed and investigated; in this method, at each point on the camber line, the vorticity and sources are assumed to be distributed along a straight line tangent to the camber line at that point, and corrections are determined to account for the deviation of the actual camber line from the tangent line. Hence, the basic calculation for the cambered airfoils is reduced to the simpler calculation of the straight line airfoils, with the equivalent straight line airfoils changing from point to point.
The results of the approximate method are compared with numerical solutions for cambers as high as 25 per cent of the chord. The leaving angles of flow are predicted quite well, even at this high value of the camber. The present method also gives the functional relationship between the exit angle and the other parameters such as airfoil shape and cascade geometry.
Resumo:
A method of computing the ambiguity function (AF) for a circularly symmetric pupil function is presented. The AFs of a clear aperture and two shaded apertures are considered in detail and an explicit expression for the first of these AFs is given. We explain these results in the context of the well-known optical transfer function theory and show a primary application of these computations. A good analytic approximation is also introduced, providing an alternative method for calculating the AF, in a simpler way.
Resumo:
A study is made of the accuracy of electronic digital computer calculations of ground displacement and response spectra from strong-motion earthquake accelerograms. This involves an investigation of methods of the preparatory reduction of accelerograms into a form useful for the digital computation and of the accuracy of subsequent digital calculations. Various checks are made for both the ground displacement and response spectra results, and it is concluded that the main errors are those involved in digitizing the original record. Differences resulting from various investigators digitizing the same experimental record may become as large as 100% of the maximum computed ground displacements. The spread of the results of ground displacement calculations is greater than that of the response spectra calculations. Standardized methods of adjustment and calculation are recommended, to minimize such errors.
Studies are made of the spread of response spectral values about their mean. The distribution is investigated experimentally by Monte Carlo techniques using an electric analog system with white noise excitation, and histograms are presented indicating the dependence of the distribution on the damping and period of the structure. Approximate distributions are obtained analytically by confirming and extending existing results with accurate digital computer calculations. A comparison of the experimental and analytical approaches indicates good agreement for low damping values where the approximations are valid. A family of distribution curves to be used in conjunction with existing average spectra is presented. The combination of analog and digital computations used with Monte Carlo techniques is a promising approach to the statistical problems of earthquake engineering.
Methods of analysis of very small earthquake ground motion records obtained simultaneously at different sites are discussed. The advantages of Fourier spectrum analysis for certain types of studies and methods of calculation of Fourier spectra are presented. The digitizing and analysis of several earthquake records is described and checks are made of the dependence of results on digitizing procedure, earthquake duration and integration step length. Possible dangers of a direct ratio comparison of Fourier spectra curves are pointed out and the necessity for some type of smoothing procedure before comparison is established. A standard method of analysis for the study of comparative ground motion at different sites is recommended.
Resumo:
Part I
Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.
Part II
The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.
Resumo:
A variety of neural signals have been measured as correlates to consciousness. In particular, late current sinks in layer 1, distributed activity across the cortex, and feedback processing have all been implicated. What are the physiological underpinnings of these signals? What computational role do they play in the brain? Why do they correlate to consciousness? This thesis begins to answer these questions by focusing on the pyramidal neuron. As the primary communicator of long-range feedforward and feedback signals in the cortex, the pyramidal neuron is set up to play an important role in establishing distributed representations. Additionally, the dendritic extent, reaching layer 1, is well situated to receive feedback inputs and contribute to current sinks in the upper layers. An investigation of pyramidal neuron physiology is therefore necessary to understand how the brain creates, and potentially uses, the neural correlates of consciousness. An important part of this thesis will be in establishing the computational role that dendritic physiology plays. In order to do this, a combined experimental and modeling approach is used.
This thesis beings with single-cell experiments in layer 5 and layer 2/3 pyramidal neurons. In both cases, dendritic nonlinearities are characterized and found to be integral regulators of neural output. Particular attention is paid to calcium spikes and NMDA spikes, which both exist in the apical dendrites, considerable distances from the spike initiation zone. These experiments are then used to create detailed multicompartmental models. These models are used to test hypothesis regarding spatial distribution of membrane channels, to quantify the effects of certain experimental manipulations, and to establish the computational properties of the single cell. We find that the pyramidal neuron physiology can carry out a coincidence detection mechanism. Further abstraction of these models reveals potential mechanisms for spike time control, frequency modulation, and tuning. Finally, a set of experiments are carried out to establish the effect of long-range feedback inputs onto the pyramidal neuron. A final discussion then explores a potential way in which the physiology of pyramidal neurons can establish distributed representations, and contribute to consciousness.