931 resultados para Aparato locomotor.
Resumo:
Os moluscos do gênero Conus apresentam um aparato venenoso composto de uma rádula quitinosa ligada a glândulas de peçonha, causando envenenamentos humanos graves e mesmo óbitos pela ação neurotóxica indutora do bloqueio de vários receptores e paralisia muscular. Não há casos descritos de envenenamento no país, mas determinadas populações correm risco de acidentes.
Resumo:
We have recently suggested that the elevated T-maze (ETM) is not a useful test to study different types of anxiety in mice if a procedure similar to that originally validated for rats is employed. The present study investigated whether procedural (five exposures in the enclosed arm instead of three as originally described for rats) and structural (transparent walls instead of opaque walls) changes to the ETM leads to consistent inhibitory avoidance acquisition (IAA) and low escape latencies in mice. Results showed that five exposures to the ETM provoked consistent IAA, an effect that was independent of the ETM used. However, the ETM with transparent walls (ETMt) seemed to be more suitable for the study of conditioned anxiety (i.e. IAA) and unconditioned fear (escape) in mice, since IAA (low baseline latency with a gradual increase over subsequent exposures) and escape (low latency) profiles rendered it sensitive to the effects of anxiolytic and anxiogenic drugs. In addition to evaluation of drug effects on IAA and escape, the number of line crossings in the apparatus were used to control for locomotor changes. Results showed that whereas diazepam (1.0-2.0 mg/kg) and flumazenil (10-30 mg/kg) impaired IAA, FG 7142 (10-30 mg/kg) did not provoke any behavioral change. Significantly, none of these benzodiazepine (BDZ) receptor ligands modified escape latencies. The 5-HT1A partial receptor agonist buspirone (1.0-2.0 mg/kg) and the 5-HT releaser fenfluramine (0.15-0.30 mg/kg) impaired IAA and facilitated escape, while the full 5-HT1A receptor agonist, 8-OH-DPAT (0.05-0.1 mg/kg) and the 5-HT2B/2C receptor antagonist, SER 082 (0.5-2.0 mg/kg) failed to modify either response. mCPP (0.5-2.0 mg/kg), a 5-HT2B/2C receptor agonist, facilitated IAA but did not alter escape latency. Neither antidepressant utilized in the current study, imipramine (1.0-5.0 mg/kg) and moclobemide (3.0-10 mg/kg) affected IAA or escape performance in mice. The well-known anxiogenic drugs yohimbine (2.0-8.0 mg/kg) and caffeine (10-30 mg/kg) did not selectively affect IAA, although caffeine did impair escape latencies. Present results suggest the ETMt is useful for the study of conditioned anxiety in mice. However, upon proximal threats (e.g. open arm exposure), mice do not exhibit escape behavior as an immediate defensive strategy, suggesting that latency to leave open arm is not a useful parameter to evaluate unconditioned fear in this species. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Wistar dams were exposed to 500 ppm of Pb, as Ph acetate, or 660 ppm Na acetate in drinking water during pregnancy and lactation. Male pups at 23 (weaned) or 70 days (adult) of age were submitted to behavioral evaluation and Pb determination. The behaviors evaluated were: locomotor activity (open-field test), motor coordination (rotarod test), exploratory behavior (holeboard test), anxiety (elevated plus maze and social interaction tests), and learning and memory (shuttle box). Ph levels were measured in the blood and cerebral regions (hippocampus and striatum) of dams and pups. The results of the present report demonstrated that exposure to Ph during pregnancy and lactation induces in weaned pups hyperactivity, decreased exploratory behavior, and impairment of learning and memory. These alterations were observed at blood Ph levels in the range that may be attained in children chronically exposed to low levels of Pb (21 +/- 3 mug/dl). Regarding adults, the results demonstrated that the regimen of exposure adopted induces anxiety in these animals at nondetectable blood Ph levels. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
Diethylpropion (DEP) is an amphetamine-like compound used as a coadjutant in the treatment of obesity and which presents toxicological importance as a drug of abuse. This drug causes important behavioral and cardiovascular complications; however, the vascular and behavioral alterations during DEP treatment and withdrawal, have not been determined. We evaluated the effects of DEP treatment and withdrawal on the rat aorta reactivity to noradrenaline, focusing on the endothelium, and the rat behavior during DEP treatment and withdrawal. DEP treatment caused a hyporreactivity to noradrenaline in aorta, reversible after 2 days of withdrawal and abolished by both the endothelium removal and the presence of L-NAME, but not by the presence of indomethacin. Furthermore, DEP treatment increased the general activity of rats. Contrarily, DEP withdrawal caused a decrease in the locomotor activity and an increase in grooming behavior, on the 2nd and 7th days after the interruption of the treatment, respectively. DEP treatment also caused an adaptive vascular response to noradrenaline that seems to be dependent on the increase in the endothelial nitric oxide system activity, but independent of prostaglandins synthesis. The data evidenced chronological differences in the adaptive responses of the vascular and central nervous systems induced by DEP treatment. Finally, a reversion of the adaptive response to DEP was observed in the vascular system during withdrawal, whereas a neuroadaptive process was still present in the central nervous system post-DEP. These findings advance on the understanding of the vascular and behavioral pathophysiological processes involved in the therapeutic and abusive uses of DEP. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
A dynamical systems approach to the study of locomotor intralimb coordination in those with hemiparesis led to an examination of the utility of the shank-thigh relative phase (RP) as a collective variable and the identification of potential constraints that may shape this coordination. Eighteen non-disabled individuals formed three groups matched to the age and gender of six participants with chronic right hemiparesis. The three groups differed in the constraints imposed on their walking: (1) walking at their preferred walking speed; (2) walking as slowly as those with hemiparesis; and, (3) walking slowly with a right ankle-foot orthosis (AFO). The results revealed an asymmetry in intralimb coordination between the unaffected and affected leg of those with hemiparesis localized to the latter third of the gait cycle when the limb is advanced from the end of stance to the reestablishment of a new stance. Walking slowly with or without an AFO resulted in no measureable effect in the non-disabled, but accounts for 22% of the variance in the intralimb coordination of the hemiplegic's affected limb and 16% in the unaffected limb. The AFO offered little additional contribution. These results derive from shank-thigh RP that is shown to provide more information about intralimb coordination than knee angle displacement. Implications for these results and the use of RP for rehabilitation are discussed. (C) 2000 Elsevier B.V. B.V. All rights reserved. PsycINFO classification. 3297. 2330.
Resumo:
Lead toxicity was studied in rats exposed from conception until weaning and assessed by monitoring offspring behavior in both the open field and elevated plus maze and by determining tissue lead in an assessment schedule extended to first (F1) and second (F2) generations. Dams utilized for the F1 generation were submitted to 750 ppm of lead (acetate) in drinking water during pregnancy and lactation. For F1 pups, behavioral alterations were not detected in the elevated plus maze, while in the open field, spontaneous locomotor activity as well as time of both grooming and rearing increased, while freezing time decreased in 30- and 90-day-old rats. Lead content was higher in tissues of 1- and 30-day-old pups. However, in 90-day-old rats, lead was detected only in the femur. F2 generation was lead-free but still presented alterations in both locomotor activity and grooming in 30- and 90-day-old pups. It appears that developmental lead exposure may cause behavioral effects during the developmental stage of the F1 generation, which remains throughout the animal's adult life as a sequel, regardless of lead accumulation, and is extended to the F2 generation of rats. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
The median raphe nucleus (MRN) has been suggested as the origin of a behavioral inhibition system that projects to the septum and hippocampus. Electrical stimulation of this mesencephalic area causes behavioral and autonomic manifestations characteristic of fear such as, freezing, defecation and micturition. In this study we extend these observations by analyzing the behavioral and autonomic responses of rats with lesions in the MRN submitted to a contextual conditioning paradigm. The animals underwent electrolytic or sham lesions of the median raphe nucleus. One day (acute) or 7 days (chronic) later they were tested in an experimental chamber where they received 10 foot-shocks (0.7 mA, 1 s with 20-s interval). The next day, sham and MRN-lesioned animals were tested again either in the same or in a different experimental chamber. During this, the duration of freezing, rearings, bouts of micturition and number of fecal boli were recorded. Sham-operated rats placed in the same chamber showed more freezing than rats exposed to a different context. This freezing behavior was clearly suppressed in rats with acute or chronic lesions in the MRN. MRN lesions also reduced the bouts of micturition and number of fecal boli. These rats showed a reduced number of rearings than sham-lesioned rats. This effect is probably the result of the displacement effect provoked by freezing since no significant differences in the number of rearings could be observed between these animals and the NMR-lesioned rats tested in an open field. This lesion produced higher horizontal locomotor activity in this test than the controls (sham-lesioned rats). These results point to the importance of the median raphe nucleus in the processing of fear conditioning with freezing being the most salient feature of it. Behavioral inhibition is also under control of MRN but its neural substrate seems to be dissociated from that of contextual fear. (C) 1998 Elsevier B.V. B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Glutamate-NMDA (N-methyl-D-aspartate) receptor activation within the periaqueductal gray (PAG) leads to antinociceptive, autonomic and behavioral responses characterized as the fear reaction. We have recently demonstrated that the vigorous defensive-like behaviors (e.g. jumping and running) and antinociception induced by intra-PAG injection of N-methyl-D-aspartate (NMDA) were completely blocked by prior infusion of N(omega)-propyl-L-arginine (NPLA), a specific neuronal nitric oxide synthesis (nNOS) enzyme inhibitor, into the same midbrain structure. It remains unclear however, whether the inhibition of nNOS within the mouse PAG changes the anxiety-like behavior per se or the effects of the inhibition of nNOS depend on the suppression of downstream of glutamate-NMDA receptor activation. This study investigated whether intra-PAG infusion of NPLA (i) attenuates anxiety in the elevated plus-maze (EPM) and (ii) antagonizes the anxiogenic-like effects induced by intra-PAG injection of NMDA. Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that intra-PAG infusions of NPLA (0.2, 0.4 or 0.8 nmol/0.1 mu l) did not alter significantly any behavioral response in the EPM when compared to control group (Experiment 1). Intra-PAG infusion of NMDA (0 and 0.02 nmol/0.1 mu l; a dose that does not provoke vigorous defensive behaviors per se in mice) significantly reduced open arm exploration, confirming an anxiogenic-like effect (Experiment 2). When injected into the PAG 10 min prior local NMDA injection (0.02 nmol/0.1 mu l), NPLA (0.4 nmol/0.1 mu l) was able to revert the anxiogenic-like effect of glutamate-NMDA receptor activation. Neither intra-PAG infusion of NMDA nor NPLA altered closed arm entries, a widely used measure of locomotor activity in the EPM. These results suggest that intra-PAG nitric oxide synthesis does not play a role on anxiety-like behavior elicited during EPM exposure; however its synthesis is important for the proaversive effects produced by activation of glutamate-NMDA receptors located within this limbic midbrain structure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Intermittent exposure to social defeat stress can induce long-term neural plasticity that may influence escalated cocaine-taking behavior. Stressful encounters can lead to activation of dopamine neurons in the ventral tegmental area (VTA), which are modulated by corticotropin releasing factor (CRF) neurons.The study aims to prevent the effects of intermittently scheduled, brief social defeat stress on subsequent intravenous (IV) cocaine self-administration by pretreatment with a CRF receptor subtype 1 (CRF-R1) antagonist.Long-Evans rats were submitted to four intermittent social defeat experiences separated by 72 h over 10 days. Two experiments examined systemic or intra-VTA antagonism of CRF-R1 subtype during stress on the later expression of locomotor sensitization and cocaine self-administration during fixed (0.75 mg/kg/infusion) and progressive ratio schedules of reinforcement (0.3 mg/kg/infusion), including a continuous 24-h "binge" (0.3 mg/kg/infusion).Pretreatment with a CRF-R1 antagonist, CP 154,526, (20 mg/kg i.p.) prior to each social defeat episode prevented the development of stress-induced locomotor sensitization to a cocaine challenge and prevented escalated cocaine self-administration during a 24-h "binge". In addition, pretreatment with a CRF-R1 antagonist (0.3 mu g/0.5 mu l/side) into the VTA prior to each social defeat episode prevented stress-induced locomotor sensitization to a cocaine challenge and prevented escalated cocaine self-administration during a 24-h "binge".The current results suggest that CRF-R1 subtype in the VTA is critically involved in the development of stress-induced locomotor sensitization which may contribute to escalated cocaine self-administration during continuous access in a 24-h "binge".
Resumo:
Objective To evaluate the effects of intravenous regional limb perfusion (IRLP) administration of amphotericin B in horses to treat pythiosis after surgical excision and thermocautery. Study Design Case series. Animals Horses (n = 12) with Pythium insidiosum infection of the distal aspect of the thoracic or pelvic limbs. Methods After surgical excision of granulation tissue and thermocautery, 50 mg amphotericin B was administered by IRLP through a catheter placed in a superficial vein of the affected limb next to the lesion after placing a tourniquet above the injection site. The lesions and locomotor system were evaluated before treatment and at 7, 14, 21, 28, 35, and 60 days. Results Ninety-two percent of horses treated with amphotericin B had complete lesion resolution 35 or 60 days after 1 or 2 IRLP treatments, respectively. IRLP induced limb edema and pain during regional palpation in 42%, and inflammation of the injection site in 33% of horses; however these signs resolved after 14 days. Conclusions IRLP administration of amphotericin B was effective for treating pythiosis in equine limbs, resolving infection with manageable side effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)