914 resultados para Antigens and antibodies.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have developed a novel multilocus sequence typing (MLST) scheme and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and random amplification of polymorphic DNA typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (STs). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB1), representing 64?% of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants, which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition. Characterization of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is increasing evidence that non-enzymatic post-translational protein modifications might play key roles in various diseases. These protein modifications can be caused by free radicals generated during oxidative stress or by their products generated during lipid peroxidation. 4-Hydroxynonenal (HNE), a major biomarker of oxidative stress and lipid peroxidation, has been recognized as important molecule in pathology as well as in physiology of living organisms. Therefore, its detection and quantification can be considered as valuable tool for evaluating various pathophysiological conditions.The HNE-protein adduct ELISA is a method to detect HNE bound to proteins, which is considered as the most likely form of HNE occurrence in living systems. Since the earlier described ELISA has been validated for cell lysates and the antibody used for detection of HNE-protein adducts is non-commercial, the aim of this work was to adapt the ELISA to a commercial antibody and to apply it in the analysis of human plasma samples.After modification and validation of the protocol for both antibodies, samples of two groups were analyzed: apparently healthy obese (n=62) and non-obese controls (n=15). Although the detected absolute values of HNE-protein adducts were different, depending on the antibody used, both ELISA methods showed significantly higher values of HNE-protein adducts in the obese group. © 2013 The Authors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have recently found that celiac disease patient serum-derived autoantibodies targeted against transglutaminase 2 interfere with several steps of angiogenesis, including endothelial sprouting and migration, though the mechanism involved remained to be fully characterized. This study now investigated the processes underlying the antiangiogenic effects exerted by celiac disease patient antibodies on endothelial cells, with particular regard to the adhesion, migration, and polarization signaling pathway. We observed that celiac IgA reduced endothelial cell numbers by affecting adhesion without increasing apoptosis. Endothelial cells in the presence of celiac IgA showed weak attachment, a high susceptibility to detach from fibronectin, and a disorganized extracellular matrix due to a reduction of protein cross-links. Furthermore, celiac patient IgA led to secretion of active transglutaminase 2 from endothelial cells into the culture supernatants. Additionally, cell surface transglutaminase 2 mediated integrin clustering in the presence of celiac IgA was coupled to augmented expression of ß1-integrin. We also observed that celiac patient IgA-treated endothelial cells had migratory defects and a less polarized phenotype when compared to control groups, and this was associated with the RhoA signaling pathway. These biological effects mediated by celiac IgA on endothelial cells were partially influenced but not completely abolished by R281, an irreversible extracellular transglutaminase 2 enzymatic activity inhibitor. Taken together, our results imply that celiac patient IgA antibodies disturb the extracellular protein cross-linking function of transglutaminase 2, thus altering cell-extracellular matrix interactions and thereby affecting endothelial cell adhesion, polarization, and motility. © 2013 Springer Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1-transmitting mothers and 165 propensity score-matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1-infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3-specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

B cells mediate immune responses via the secretion of antibody and interactions with other immune cell populations through antigen presentation, costimulation, and cytokine secretion. Although B cells are primarily believed to promote immune responses using the mechanisms described above, some unique regulatory B cell populations that negatively influence inflammation have also been described. Among these is a rare interleukin (IL)-10-producing B lymphocyte subset termed “B10 cells.” B cell-derived IL-10 can inhibit various arms of the immune system, including polarization of Th1/Th2 cell subsets, antigen presentation and cytokine production by monocytes and macrophages, and activation of regulatory T cells. Further studies in numerous autoimmune and inflammatory models of disease have confirmed the ability of B10 cells to negatively regulate inflammation in an IL-10-dependent manner. Although IL-10 is indispensable to the effector functions of B10 cells, how this specialized B cell population is selected in vivo to produce IL-10 is unknown. Some studies have demonstrated a link between B cell receptor (BCR)-derived signals and the acquisition of IL-10 competence. Additionally, whether antigen-BCR interactions are required for B cell IL-10 production during homeostasis as well as active immune responses is a matter of debate. Therefore, the goal of this thesis is to determine the importance of antigen-driven signals during B10 cell development in vivo and during B10 cell-mediated immunosuppression.

Chapter 3 of the dissertation explored the BCR repertoire of spleen and peritoneal cavity B10 cells using single-cell sequencing to lay the foundation for studies to understand the full range of antigens that may be involved in B10 cell selection. In both the spleen and peritoneal cavity B10 cells studied, BCR gene utilization was diverse, and the expressed BCR transcripts were largely unmutated. Thus, B10 cells are likely capable of responding to a wide range of foreign and self-antigens in vivo.

Studies in Chapter 4 determined the predominant antigens that drive B cell IL-10 secretion during homeostasis. A novel in vitro B cell expansion system was used to isolate B cells actively expressing IL-10 in vivo and probe the reactivities of their secreted monoclonal antibodies. B10 cells were found to produce polyreactive antibodies that bound multiple self-antigens. Therefore, in the absence of overarching active immune responses, B cell IL-10 is secreted following interactions with self-antigens.

Chapter 5 of this dissertation investigated whether foreign antigens are capable of driving B10 cell expansion and effector activity during an active immune response. In a model of contact-induced hypersensitivity, in vitro B cell expansion was again used to isolate antigen-specific B10 clones, which were required for optimal immunosuppression.

The studies described in this dissertation shed light on the relative contributions of BCR-derived signals during B10 cell development and effector function. Furthermore, these investigations demonstrate that B10 cells respond to both foreign and self-antigens, which has important implications for the potential manipulation of B10 cells for human therapy. Therefore, B10 cells represent a polyreactive B cell population that provides antigen-specific regulation of immune responses via the production of IL-10.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research in biosensing approaches as alternative techniques for food diagnostics for the detection of chemical contaminants and foodborne pathogens has increased over the last twenty years. The key component of such tests is the biorecognition element whereby polyclonal or monoclonal antibodies still dominate the market. Traditionally the screening of sera or cell culture media for the selection of polyclonal or monoclonal candidate antibodies respectively has been performed by enzyme immunoassays. For niche toxin compounds, enzyme immunoassays can be expensive and/or prohibitive methodologies for antibody production due to limitations in toxin supply for conjugate production. Automated, self-regenerating, chip-based biosensors proven in food diagnostics may be utilised as rapid screening tools for antibody candidate selection. This work describes the use of both single channel and multi-channel surface plasmon resonance (SPR) biosensors for the selection and characterisation of antibodies, and their evaluation in shellfish tissue as standard techniques for the detection of domoic acid, as a model toxin compound. The key advantages in the use of these biosensor techniques for screening hybridomas in monoclonal antibody production were the real time observation of molecular interaction and rapid turnaround time in analysis compared to enzyme immunoassays. The multichannel prototype instrument was superior with 96 analyses completed in 2h compared to 12h for the single channel and over 24h for the ELISA immunoassay. Antibodies of high sensitivity, IC50's ranging from 4.8 to 6.9ng/mL for monoclonal and 2.3-6.0ng/mL for polyclonal, for the detection of domoic acid in a 1min analysis time were selected. Although there is a progression for biosensor technology towards low cost, multiplexed portable diagnostics for the food industry, there remains a place for laboratory-based SPR instrumentation for antibody development for food diagnostics as shown herein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the case of a boy with an encephalopathy associated with extrapyramidal and psychiatric symptoms and anti-N-methyl-D-aspartate receptor antibodies. He had positive serum antithyroid antibodies, IgM antibodies against Mycoplasma pneumoniae and human herpesvirus 7 polymerase chain reaction in the cerebrospinal fluid. He was successfully treated with rituximab, after steroids, intravenous immunoglobulin and plasma exchange. The pathophysiology of this disorder may be post-infectious and autoimmune.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunohistochemistry (IHC) is the group of techniques that use antibodies as specific reagents to identify and demonstrate several cell and tissue components that are antigens. This linking allows locating and identifying the in situ presence of various substances by means of color that is associated with the formed antigen-antibody complexes. The practical value of this biotechnology area, widely used in Pathology and Oncology, in diagnostic, prognostic, theranostic and research context, results from the possibility of combining a colour marker with an antibody without causing any damage to specific binding established between antibody and antigen. This provides the microscopic observation of the target locations where the antibody and hence the antigen are present. IHC is presented as a powerful means for identification of several cellular and tissue structures that can be associated with pathologies, and of the consequences, at functional and morphological level, of these same elements action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dinoflagellates of Alexandrium genus are known to be producers of paralytic shellfish toxins that regularly impact the shellfish aquaculture industry and fisheries. Accurate detection of Alexandrium including A. minutum is crucial for environmental monitoring and sanitary issues. In this study, we firstly developed a quantitative lateral flow immunoassay (LFIA) using super-paramagnetic nanobeads for A. minutum whole cells. This dipstick assay relies on two distinct monoclonal antibodies used in a sandwich format and directed against surface antigens of this organism. No sample preparation is required. Either frozen or live cells can be detected and quantified. The specificity and sensitivity are assessed by using phytoplankton culture and field samples spiked with a known amount of cultured A. minutum cells. This LFIA is shown to be highly specific for A. minutum and able to detect reproducibly 105 cells/L within 30 min. The test is applied to environmental samples already characterized by light microscopy counting. No significant difference is observed between the cell densities obtained by these two methods. This handy super-paramagnetic lateral flow immnunoassay biosensor can greatly assist water quality monitoring programs as well as ecological research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Serosurveillance is a powerful tool fundamental to understanding infectious disease dynamics. The presence of virus neutralising antibody (VNAb) in sera is considered the best evidence of infection, or indeed vaccination, and the gold standard serological assay for their detection is the virus neutralisation test (VNT). However, VNTs are labour intensive, costly and time consuming. In addition, VNTs for the detection of antibodies to highly pathogenic viruses require the use of high containment facilities, restricting the application of these assays to the few laboratories with adequate facilities. As a result, robust serological data on such viruses are limited. In this thesis I develop novel VNTs for the detection of VNAb to two important, highly pathogenic, zoonotic viruses; rabies and Rift Valley fever virus (RVFV). The pseudotype-based neutralisation test developed in this study allows for the detection of rabies VNAb without the requirement for high containment facilities. This assay was utilised to investigate the presence of rabies VNAb in animals from a variety of ecological settings. In this thesis I present evidence of natural rabies infection in both domestic dogs and lions from rabies endemic settings. The assay was further used to investigate the kinetics of VNAb response to rabies vaccination in a cohort of free-roaming dogs. The RVFV neutralisation assay developed herein utilises a recombinant luciferase expressing RVFV, which allows for rapid, high-throughput serosurveillance of this important neglected pathogen. In this thesis I present evidence of RVFV infection in a variety of domestic and wildlife species from Northern Tanzania, in addition to the detection of low-level transmission of RVFV during interepidemic periods. Additionally, the investigation of a longitudinal cohort of domestic livestock also provided evidence of rapid waning of RVF VNAb following natural infection. Collectively, the serological data presented in this thesis are consistent with existing data in the literature generated using the gold standard VNTs. Increasing the availability of serological assays will allow the generation of robust serological data, which are imperative to enhancing our understanding of the complex, multi-host ecology of these two viruses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monoclonal antibodies and novel antibody formats are currently one of the principal therapeutic in the biopharmaceutical industry worldwide and are widely used in the treatment of autoimmune diseases and cancer. It is for this reason that the productivity and quality of antibody production requires improvement; specifically investigations into the engineering of antibodies and any issues that may arise from the production of these therapeutics. The work presented in this thesis describes an investigation into the folding and assembly of seven antibodies plus the novel antibody format FabFv. IgG is comprised of two identical HCs and two identical LCs. The folding process of immunoglobulin is controlled by the CH1 domain within the HC. The CH1 domain remains in a disordered state and is sequestered by BiP in the endoplasmic reticulum. Upon the addition of a folded CL domain, BiP is displaced, the CH1 domain is able to fold and the complete IgG protein can then be secreted from the cell. The results presented in this thesis however, have outlined an additional mechanism for the folding of the CH1 domain. We have shown that the CH1 domain is able to fold in the absence of LC resulting in the secretion of HC dimers in a VH dependent manner. The proposed mechanism for the secretion of HC dimers suggests that some VH domains can interact with each other in order to bring the CH1 domains in close proximity to enable folding to occur. As HC dimer secretion is a hindrance in antibody production, this result has highlighted an engineering target to improve antibody yield. Examination of the folding of IgG4 with the variable region A33 has revealed the inability to secrete LC dimers, cleavage of the HC during expression and secretion of HC dimers in the Fab, FabFv and full length forms. The attributes described have also been shown to be variable region dependent. This has introduced a new concept that the variable domain is important in determining the expression and secretion of antibodies and their individual chains. Pulse chase and 2D gel electrophoresis analysis of the novel antibody format FabFv has revealed that the folding and expression of the LC and HC causes multimeric species of FabFv to be secreted, as opposed to the monomeric form which is the desired therapeutic. Our hypothesis is that this process occurs via a LC dependent mechanism. The proposed hypothesis suggests that further engineering to the LC could diminish the formation and secretion of FabFv multimers. The results from these investigations can be applied to increase the productivity of therapeutics and increase the biological understanding of the domain interactions of IgG during folding, assembly and secretion.