995 resultados para Amaurolithus primus
Resumo:
An apparently complete Danian section was recovered at ODP Site 738 on the southern Kerguelen Plateau. Calcareous nannofossils are abundant and moderately preserved in the section. A number of taxa common in middle or low latitudes, such as Braarudosphaera, Biscutum? romeinii, Biscutum? parvulum, Cyclagelosphaera, Octolithus multiplus, and Toweius petalosus are absent at Site 738. On the other hand, a bloom of Hornibrookina occurs at Site 738 only slightly (15 cm) above the Cretaceous/Tertiary boundary as defined by the iridium peak. Species of Chiasmolithus and Prinsius are very abundant. This gives the nannofossil assemblages distinct high-latitude characteristics and suggests significant latitudinal thermal gradients in the Danian oceans. A Danian nannofossil zonation for the Antarctic region is proposed, which utilizes traditional markers and several nontraditional markers, i.e., the first occurrences of Hornibrookina, Prinsius martinii, and Chiasmolithus bidens, and the last occurrence of Hornibrookina teuriensis. Quantitative analyses of the calcareous nannofossil assemblages from Site 738 reveal four steps of rapid floral changes in the early Danian before relatively stable nannofloral conditions were reached at about 63.8 Ma.
Resumo:
Seven sites drilled in the central New Hebrides Island Arc during Ocean Drilling Program Leg 134 yielded varying quantities of upper Eocene through Pleistocene calcareous nannofossils. Most of the Miocene and Pliocene strata were absent from Sites 827-831 drilled along the collisional boundary between the Australia and Pacific plates where the North d'Entrecasteaux Ridge and Bougainville Guyot are being subducted. Sites 832 and 833, drilled in the intra-arc North Aoba Basin, contained upper Miocene through Pleistocene and early Pliocene through Pleistocene nannofossils, respectively. Detailed range charts displaying species abundances and age interpretations are presented for all of the sites. Despite problems of reworked assemblages, poor preservation, overgrowths and/or dilution from volcaniclastics, the nannofossil biostratigraphy delineates several repeated sections at Site 829 in the accretionary prism adjacent to Espiritu Santo Island. Paleogene pelagic sediments equivalent to those in a reference section at Site 828 appear to have been scraped from the downgoing North d'Entrecasteaux Ridge and accreted onto the forearc during the Pleistocene. Other sediments in the forearc include Pleistocene olistostromal trench-fill deposits containing clasts of various ages and compositions. Some of the clasts and olistoliths have affinities to rocks exposed on the neighboring islands and environs, whereas others are of uncertain origin. The matrix of the olistostromes is predominately Pleistocene, however, matrices of mixed nannofossil ages are frequently encountered. Comparisons of the mixed nannofossil ages in the matrices with sedimentological and structural data suggest that sediment mixing resulting from fault movement is subordinate to that occurring during deposition.
Resumo:
The calcareous nannofossil biostratigraphy of ODP Leg 177 Sites 1088 and 1090 (Subantarctic sector from the Atlantic Ocean) is discussed. Most nannofossil zonal boundaries of Martini (1971) and Okada and Bukry (1980) were recognized for the studied mid-high-latitude sediments. Conventional low-latitude marker species such as Amaurolithus spp., Discoaster spp., Triquetrorhabdulus spp., Ceratolithus spp. were recorded as rare and scattered, which impeded the development of a detailed nannofossil biostratigraphic zonation of some Miocene and Pliocene intervals. Because of the absence of some primary biostratigraphic marker species, additional second-order bioevents, such as the first occurrence of Calcidiscus macintyrei and the last occurrence of Coccolithus miopelagicus, have been used to approximate the base of zones NN7 and NN8, respectively. Several disconformities disturbing the Pliocene and Miocene intervals of Site 1090 could be determined based on nannofossil distribution although the occurrence of intervals with dissolved nannofloras and low species diversity prevented a reliable age assignment. An acme of small Gephyrocapsa was recognized near the lower/middle Pliocene boundary, close to the NN15-NN16 zonal boundary, presenting an event for further improvement of the calcareous nannofossil biostratigraphy of this interval time. The first occurrence of Pseudoemiliania lacunosa (>4 µm) occurs close to this interval, representing a fairly reliable event to approximate the base of NN15 zone when other biozonal events are absent. A paracme of R. pseudoumbilicus (>7 µm) was detected in the lower Pliocene NN12 and in the upper Miocene NN11. These temporary absences of the species seem to be isochronous between high-latitude and low-middle-latitude areas.
Resumo:
Ocean Drilling Program Leg 103 recovered Lower Cretaceous sediments from the Galicia margin off the coast of Iberia. The high diversity and abundance of assemblages makes this excellent material for the study of Early Cretaceous calcareous nannofossils. With the exception of a hiatus between the upper Hauterivian and lower Barremian, nannofossil distributions form a continuous composite section from the lower Valanginian to lower Cenomanian sediments recovered at the four sites. The sedimentation history of this rifted continental margin is complex, and careful examination of the nannofossil content and lithology is necessary in order to obtain optimum biostratigraphic resolution. The Lower Cretaceous sequence consists of a lower Valanginian calpionellid marlstone overlain by terrigenous sandstone turbidites deposited in the Valanginian and Hauterivian during initial rifting of this part of the margin. Interbedded calcareous marl and claystone microturbidites overlie the sandstone turbidites. Rifting processes culminated in the late Aptian-early Albian, resulting in the deposition of a calcareous, clastic turbidite sequence. The subsequent deposition of dark carbonaceous claystones (black shales) represents the beginning of seafloor spreading, as the margin continued to subside to depths near or below the CCD. The diversity, abundance, and preservation of nannofossils within these varied lithologies differ, and an attempt to distinguish between near shore and open-marine assemblages is made. Genera used for this purpose include Nannoconus, Micrantholithus, Pickelhaube, and Lithraphidites. In this study, six new species and one new subspecies are described and documented. Ranges of other species are extended, and an attempt is made to clarify existing, yet poorly understood, taxonomic concepts. A technique in which a single specimen is viewed with both light and scanning electron microscopes was used extensively to aid in this task. In addition, further subdivisions of the Sissingh (1977) zonation are suggested in order to increase biostratigraphic resolution.
Resumo:
Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 3000-yr. resolution. Covariance in benthic (Planulina wuellerstorfi) and planktonic (Globigerina bulloides) foraminiferal d18O records is taken as evidence for variability in continental ice volume. Our best estimate is that glacial maxima occurred at -5.0 and ~ 5.5 Ma and lasted no more than 20,000 yrs. These events probably lowered sea level by 60 m below the latest Miocene average. There is little oxygen-isotope evidence, however, for a prolonged glaciation during the last 2 m.y. of the late Miocene. High- and low-frequency variability in the d13C record of foraminifers is useful for correlation among North Atlantic DSDP Sites 408, 410, 522, 610, and 611, and for correlation with sites in other oceans. Similar d13C changes are seen in P. wuellerstorfi and G. bulloides, but the amplitude of the signal is always greater in G. bulloides. Variability in d13C common to both species probably reflects variability in the d13C of total CO2 in seawater. Major long-term features in the d13C record include a latest Miocene maximum (P. wuellerstorfi = 1.5 per mil ) in paleomagnetic Chron 7, an abrupt decrease in d13C at -6.2 Ma, and a slight increase at -5.5 Ma. The decrease in d13C at -6.2 Ma, which has been paleomagnetically dated only twice before, occurs in the upper reversed part of Chronozone 6 at Holes 552A and 611C, in excellent agreement with earlier studies. Cycles in d13C with a period of ~ 10 4 yrs. are interpreted as changes in seawater chemistry, which may have resulted from orbitally induced variability in continental biomass. Samples of P. wuellerstorfi younger than 6 Ma from throughout the North Atlantic have d13C near lo, on average ~ l per mil greater than samples of the same age in the Pacific Ocean. Thus, there is no evidence for cessation of North Atlantic Deep Water production resulting from the Messinian "salinity crisis." Biostratigraphic results indicate continuous sedimentation during the late Miocene after about -6.5 Ma at Hole 552A. Nannofossil biostratigraphy is complicated by the scarcity of low-latitude marker species, but middle and late Miocene Zones NN7 through NN11 are recognized. A hiatus is present at -6.5 Ma, on the basis of simultaneous first occurrences of Amaurolithusprimus, Amaurolithus delicatus, Amaurolithus amplificus, and Scyphosphaera globulata. The frequency and duration of older hiatuses increase downsection in Hole 552A, as suggested by calcareous nannofossil biostratigraphy and magnetostratigraphy. Paleomagnetic results at Hole 552A indicate a systematic pattern of inclination changes. Chronozone 6 was readily identified because of its characteristic nannoflora (sequential occurrences of species assigned to the genus Amaurolithus) and the d13C decrease in foraminifers, but its lower reversed interval is condensed. Only the lower normal interval of Chronozone 5 was recognized at Hole 552A; the upper normal interval and the lowest Gilbert sediment are not recognized, owing to low intensity of magnetization and to coring disturbance. Interpreting magnetic reversals below Chronozone 6 was difficult because of hiatuses, but a lower normally magnetized interval is probably Chronozone 7. Correlation between DSDP Hole 552A and other North Atlantic sites is demonstrated using coiling direction changes in the planktonic foraminifer Neogloboquadrina. At most sites this genus changed its coiling preference from dominantly right to dominantly left during the late Miocene. At Hole 552A this event probably occurred about 7 m.y. ago. At the same time, P. wuellerstorfi had maximum d13C values. A similar d13C maximum and coiling change occurred together in Chron 7 at Hole 611C, and at Hole 610E. In sediment younger than -5.5 Ma, the coiling of small Neogloboquadrina species is random, but the larger species N. atlantica retains preferential left coiling.
Resumo:
Paleogene calcareous nannofossils from split spoon cores recovered from five wells along the Coastal Plain of New Jersey and Maryland have been analyzed in order to provide onshore information complementary to that derived from the offshore DSDP Site 605 (upper continental rise off New Jersey). Hiatuses are more numerous and of greater extent in the onshore sections, but the major ones correlate well with those noted in the offshore section. At one site at least (Leggett Well), sedimentation may well have been continuous across the Cretaceous/Tertiary boundary, as it is believed to have been at DSDP Site 605. These various correlations are discussed elsewhere in a companion paper (Olsson and Wise, this volume). Important differences in nannofossil assemblages are noted between the onshore (shelf paleoenvironment) and offshore (slope-rise paleoenvironment) sections. Lithostromation simplex, not present offshore, is consistently present onshore and seems to be confined to the Eocene shelf sediments of this region. The same relationship holds for the zonal marker, Rhabdosphaera gladius Locker. The Rhomboaster-Tribrachiatus plexus is more diverse and better preserved in the onshore sections, where the lowermost Eocene Zone CP9 is well represented. Differential preservation is postulated to account for two morphotypes of Tribrachiatus bramlettei (Brönnimann and Stradner). Type A is represented at DSDP Site 605 by individuals with short, stubby arms, but these forms are not present in the equivalent onshore sections. There they are replaced by the Type B morphotypes, which exhibit a similar basic construction but possess much longer, more delicate arms.
Resumo:
During Ocean Drilling Program Leg 171B, a thick sequence of lower to middle Eocene sediments was recovered from Sites 1051 and 1052 at Blake Nose in the North Atlantic Ocean. Calcareous nannofossils are moderately well preserved in the upper to middle Eocene sediments but are moderate to poorly preserved in the lower Eocene sediments. Calcareous nannofossils are diverse throughout the recovered sequence, which extends from nannofossil Zone CP8 to Subzone CP15a. The nannofossil biostratigraphy of these sites indicates the presence of a hiatus in Subzone CP12a in the middle Eocene, in which the major nannofossil assemblage changes dramatically from Toweius to reticulofenestrid; however, no major change in the nannoflora was observed across the Eocene/Paleocene boundary. Coccolith size evolution patterns were recognized. Coccolithus, Reticulofenestra, and Cribrocentrum specimens may suggest a trend of increasing size upward through the sedimentary sequence, but Dictyococcites does not show a similar simple trend. Most traditional zonal markers are present. The reworking of Discoaster sublodoensis and overgrowth of Tribrachiatus in the lower Eocene makes zonal subdivision of this part of the sequence difficult. For this reason, tentative nannofossil zonation is given for the lower Eocene.
Resumo:
Three sites drilled during Leg 122, Site 761 on the Wombat Plateau and Sites 762 and 763 on the Exmouth Plateau, provide a composite Cretaceous section ranging in age from Berriasian to Maestrichtian. Together, these sites contain an apparently complete, expanded Aptian-Maestrichtian record. Consistently occurring and moderately well-preserved nannofossil assemblages allow reasonably high biostratigraphic resolution. Our data indicate that traditional middle and Upper Cretaceous nannofossil biozonations are not entirely applicable in this region. In this investigation, we compare in detail the relative ranges of key Cretaceous nannofossil markers in the eastern Indian Ocean and in sections from Europe and North Africa. We have determined which previously used events are applicable, and which additional markers have biostratigraphic utility in this region. Significant differences in Campanian-Maestrichtian assemblages exist between the more northern Site 761 and Sites 762 and 763. Such differences are surprising, considering that these sites are only separated by 3° of latitude. We interpret them as marking a strong thermal gradient over the Exmouth Plateau region. Other results include the recovery of an expanded Albian-Cenomanian sequence containing a mixture of Austral and Tethyan floras, which will enable correlation of biozonations established for these two realms; the recovery of two condensed but apparently complete Cenomanian-Turonian boundary sections; correlation of Upper Cretaceous calcareous nannofossil biostratigraphy with magneto- and foraminifer stratigraphy; and correlation of portions of the Barrow Group equivalents to the Berriasian and Valanginian stages.
Resumo:
During Ocean Drilling Program Leg 149, five sites were drilled on the Iberia Abyssal Plain, west of the Iberian Peninsula. Five holes (Holes 897A, 897C, 898A, 899A, and 900A) yielded Pliocene-Pleistocene sediments, which consist mainly of turbidites. Among these, Holes 897C and 898A yielded significant Pliocene-Pleistocene sediments that provided a high-resolution nannofossil biostratigraphy essential for locating paleomagnetic polarity events and for interpreting the age and frequency of turbidite sedimentation in the Iberia Abyssal Plain. Pliocene-Pleistocene nannofossils recovered during Leg 149 are generally abundant and well to moderately preserved. Although reworking is evident in most samples, the Pliocene-Pleistocene nannofossils proved quite reliable for dating the sediments. Most Pleistocene zonal boundaries proposed by S. Gartner in 1977 and the Pliocene standard zonal boundaries proposed by E. Martini in 1971 were easily recognized. In addition, several other nannofossil events proposed by D. Rio et al. in 1990 and by T. Sato and T. Takayama in 1992 were recognized and proved valuable for improving the resolution of Pliocene-Pleistocene nannofossil biostratigraphy. The Pliocene-Pleistocene nannofossil biostratigraphic results of Holes 897C and 900A coincide rather well with the discerned paleomagnetic polarity events. As a result, the combination of nannofossil biostratigraphic and paleomagnetic studies provides important information for fulfilling the second objective of this leg: to determine the history of turbidite sedimentation in the Iberia Abyssal Plain. The general trend of sedimentation rates inferred by nannofossil biostratigraphy indicates that sedimentation rates increase from the continental margin to the deep sea along with increasing water depth.
Resumo:
ODP Leg 131 recovered nannofossil-bearing sediments from Site 808 in the Nankai Trough, western Pacific Ocean. Three holes were examined for nannofossils, 808A, 808B, and 808C. A total of 22 nannofossil events were recognized, of which 10 are used as zonal markers. The sediments recovered from Hole 808A (0-111.4 mbsf) contain Pleistocene nannofossil assemblages that are mostly well preserved. All samples from this hole were assigned to nannofossil Zone NN21. The nannofossil assemblages observed in Hole 808B (111.0-358.8 mbsf) are poorly to well preserved and were all assigned to the Pleistocene. The NN21/NN20 Boundary is placed at 230.7 ± 4.4 mbsf. Hole 808C was cored from 298.5 to 1327 mbsf and basalt was reached at 1289.9 mbsf. The sediments recovered range in age from the upper part of Zone NN20 of the Pleistocene to Zone NN5 of the middle Miocene and contain poorly to well-preserved nannofossil assemblages. The Pliocene/Pleistocene Boundary, marked by the FO Gephyrocapsa caribbeanica, was placed at 776.3 ±1.6 mbsf, and the Miocene/Pliocene Boundary is tentatively placed at 955.9 ±1.5 mbsf. The lowermost sediments above basement as well as a sediment sample intercalated between basalt flows are assigned to Zone NN5, with an age of approximately 15 Ma. Age estimates provided by nannofossils show that the sedimentation rate in the trench-fill deposits of the Nankai Trough was very high, 800-1350 m/m.y (0-0.46 Ma), whereas in the Shikoku Basin deposits (> 0.46 Ma), the sedimentation rate was much lower (24-200 m/m.y). These age estimates also provide an extrapolated age of approximately 15 Ma for the basaltic basement at Site 808.
Resumo:
A high-resolution calcareous nannofossil analysis of the Danian/Selandian boundary was conducted at Site 1262 (Walvis Ridge, South Atlantic) to pinpoint the lowest occurrence of fasciculiths and to unravel the evolutionary trends throughout nannofossil Zone NP4. Using quantitative analyses, numerous primary and secondary bioevents were identified, improving the biostratigraphic resolution of this interval. The main events recorded at Site 1262 were also identified at the Zumaia section Global Stratotype Section and Point (GSSP) of the base of the Selandian and at the Qreiya section (Egypt). The lowest occurrence of fasciculiths (represented by the LO of Gomphiolithus magnicordis and Gomphiolithus magnus) was observed in the middle part of Chron C27r, above the LO of Toweius pertusus and prior to the LO of the genus Sphenolithus. The synchroneity of the LO of fasciculiths was also verified at various latitudes, such as DSDP Site 384 (NW Atlantic), ODP Site 761B (Indian Ocean) and DSDP Site 577A (Pacific Ocean). The first and second diversification events (Steurbaut and Sztrákos, 2008, doi:10.1016/j.marmicro.2007.08.004), or radiation events (Bernaola et al., 2009, doi:10.1344/105.000000272), of fasciculiths have been thoroughly discussed and well characterized by a succession of events. The occurrence of the Latest Danian Event (LDE) and several paleoenvironmental changes recognized during this time interval, coupled with an ecological competition with Sphenolithus, appear to be the probable causes of the First and Second Radiations and the fasciculith barren interval between them. The occurrence of new morphostructures and taxa suggests evolutionary trends and a strict link between morphological evolution and paleoclimate.