943 resultados para Actuation voltage
Resumo:
This paper deals with the subject-matter of teaching immaterial issues like power system dynamics where the phenomena and events are not sense-perceptible. The dynamics of the power system are recognized as analogous to the dynamics of a simple mechanical pendulum taken into account the well-known classical model for the synchronous machine. It is shown that even for more sophisticated models including flux decay and Automatic Voltage Regulator the mechanical device can be taken as an analogous, since provided some considerations about variation and control of the pendulum length using certain control laws. The resulting mathematical model represents a mechanical system that can be built for use in laboratory teaching of power system dynamics. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
In the last 20 years immense efforts have been made to utilize renewable energy sources for electric power generation. This paper investigates some aspects of integration of the distributed generators into the low voltage distribution network. An assessment of impact of the distributed generators on the voltage and current harmonic distortion in the low voltage network is performed. Results obtained from a case study, using real-life low voltage network, are presented and discussed.
Resumo:
In a general way, in an electric power utility the current transformers (CT) are used to measurement and protection of transmission lines (TL) 1 The Power Line Carriers systems (PLC) are used for communication between electrical substations and transmission line protection. However, with the increasing use of optical fiber to communication (due mainly to its high data transmission rate and low signal-noise relation) this application loses potentiality. Therefore, other functions must be defined to equipments that are still in using, one of them is detecting faults (short-circuits) and transmission lines insulator strings damages 2. The purpose of this paper is to verify the possibility of using the path to the ground offered by the CTs instead of capacitive couplings / capacitive potential transformers to detect damaged insulators, since the current transformers are always present in all transmission lines (TL's) bays. To this a comparison between this new proposal and the PLC previous proposed system 2 is shown, evaluating the economical and technical points of view. ©2010 IEEE.
Resumo:
A voltage reference with low sensibility to temperature and power-supply that can generate flexible reference values (from milivolts to several volts) is proposed. Designed for AMS 0.35μm CMOS process, the circuit provides a stable output voltage working in the temperature range of -40-150°C. The proposed reference provides a nominal output voltage of 1.358V with a power-supply of 3.3V. © 2011 IEEE.
Resumo:
In this paper, the susceptibility of a current-mode bandgap voltage reference to electromagnetic interference (EMI) superimposed to the power supply is investigated by simulation. Designed for AMS 0.35 CMOS process, the circuit provides a stable voltage reference in the temperature range of -40-150°C. When EMI disturbances are present, the circuit exhibits only 6.7 mV of offset for interfering signals in the frequency range of 150 kHz-1 GHz. © 2011 ACM.
Resumo:
Maximum Power Point tracking (MPPT) in photovoltaic (PV) systems may be achieved by controlling either the voltage or current of the PV device. There is no consensus in the technical literature about how is the best choice. This paper provides a comparative analysis performance among current and voltage control using two different MPPT strategies: the perturb and observe (P&O) and the incremental conductance techniques. © 2011 IEEE.
Resumo:
The Space Vector PWM implementation and operation for a Four-leg Voltage Source Inverter (VSI) is detailed and discussed in this paper. Although less common, four-leg VSIs are a viable solution for situations where neutral connection is necessary, including Active Power Filter applications. This topology presents advantages regarding the VSI DC link and capacitance, which make it useful for high power devices. Theory, implementation and simulations are also discussed in this paper. © 2011 IEEE.
Resumo:
Voltage source inverters use large electrolytic capacitors in order to decouple the energy between the utility and the load, keeping the DC link voltage constant. Decreasing the capacitance reduces the distortion in the inverter input current but this also affects the load with low-order harmonics and generate disturbances at the input voltage. This paper applies the P+RES controller to solve the challenge of regulating the output current by means of controlling the magnitude of the current space vector, keeping it constant thus rejecting harmonic disturbances that would otherwise propagate to the load. This work presents a discussion of the switching and control strategy. © 2011 IEEE.
Resumo:
The growing use of sensitive loads in the electric power system, especially in industrial applications, increases voltage sags related production losses considerably, stimulating a demand for power electronics' based solutions to mitigate the effects of such problems. This paper shows the implementation and some industrial certification tests of a power equipment prototype designed to correct sags and swells, a dynamic voltage restorer, which is one of the many possible solutions for voltage sags and swells problems Experimental results of a 75kVA prototype are shown both in laboratory and full load conditions, in a certification institution (IEE-USP). © 2011 IEEE.
Resumo:
Voltage reference generation is an important issue on electronic power conditioners or voltage compensators connected to the electric grid. Several equipments, such as Dynamic Voltage Restorers (DVR), Uninterruptable Power Supplies (UPS) and Unified Power Quality Conditioners (UPQC) need a proper voltage reference to be able to compensate electric network disturbances. This work presents a new reference generator's algorithm, based on vector algebra and digital filtering techniques. It is particularly suited for the development of voltage compensators with energy storage, which would be able to mitigate steady state disturbances, such as waveform distortions and unbalances, and also transient disturbances, like voltage sags and swells. Simulation and experimental results are presented for the validation of the proposed algorithm. © 2011 IEEE.
Resumo:
This paper presents an efficiency investigation of an isolated high step-up ratio dc-dc converter aimed to be used for energy processing from low-voltage high-current energy sources, like batteries, photovoltaic modules or fuel-cells. The considered converter consists of an interleaved active clamp flyback topology combined with a voltage multiplier at the transformer secondary side capable of two different operating modes, i.e. resonant and non-resonant according to the design of the output capacitors. The main goal of this paper is to compare these two operating modes from the component losses point of view with the aim of maximize the overall converter efficiency. The approach is based on losses prediction using steady-state theoretical models (designed in Mathcad environment), taking into account both conduction and switching losses. The models are compared with steady-state simulations and experimental results considering different operating modes to validate the approach. © 2012 IEEE.
Resumo:
This paper presents a pulsewidth modulation dc-dc nonisolated buck converter using the three-state switching cell, constituted by two active switches, two diodes, and two coupled inductors. Only part of the load power is processed by the active switches, reducing the peak current through the switches to half of the load current, as higher power levels can then be achieved by the proposed topology. The volume of reactive elements, i.e., inductors and capacitors, is also decreased since the ripple frequency of the output voltage is twice the switching frequency. Due to the intrinsic characteristics of the topology, total losses are distributed among all semiconductors. Another advantage of this converter is the reduced region for discontinuous conduction mode when compared to the conventional buck converter or, in other words, the operation range in continuous conduction mode is increased, as demonstrated by the static gain plot. The theoretical approach is detailed through qualitative and quantitative analyses by the application of the three-state switching cell to the buck converter operating in nonoverlapping mode $(D < 0.5)$. Besides, the mathematical analysis and development of an experimental prototype rated at 1 kW are carried out. The main experimental results are presented and adequately discussed to clearly identify its claimed advantages. © 1986-2012 IEEE.
Resumo:
This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The effect of seed addition on the microstructure and non-ohmic properties of the SnO2 + 1%CoO + 0.05%Nb2O5 ceramic-based system was analyzed. Two classes of seeds were prepared: 99% SnO2 + 1%CuO and 99% SnO2 + 1%CoO (mol%); both classes were added to the ceramic-based system in the amount of 1%, 5%, and 10%. The two systems containing 1% of seeds resulted in a larger grain size and a lower breakdown voltage. The addition of 1% copper seeds produces a breakdown voltage (V b) of ∼ 37 V and a leakage current (fic) of 29 μA. On the other hand, the addition of 1% cobalt seeds produced a breakdown voltage of 57 V and a leakage current of 70 μA. Both systems are of great technological interest for low voltage varistor applications, by means of appropriate strategies to reduce the leakage current. Using larger amounts of seeds was not effective since the values of breakdown voltage in both cases are close to a system without seeds. To our knowledge, there are no reports in the literature regarding the use of seeds in the SnO2 system for low voltage applications. A potential barrier model which illustrates the formation of oxygen species (O′2(ads), O′ads, and O″ads) at the expense of clusters near the interface between grains is proposed. © 2012 The American Ceramic Society.
Resumo:
Processing of the YMn2O5 powder is very challenging, since it decomposes to YMnO3 and Mn3O4 at temperatures close to 1180 °C, while samples consolidation commonly demands high temperatures. The main goal of this work is to investigate a possibility to prepare thick films of YMn2O5, since their deposition generally requires significantly lower temperatures. Multiferroic YMn 2O5 was synthesized by the hydrothermal method from Y(CH3COO)3·xH2O, Mn(CH 3COO)2·4H2O and KMnO4 precursors. XRD, FE-SEM and TEM analysis showed that the obtained powder was monophasic, with orthorhombic crystal structure and columnar particle shape with mean diameter and length of around 20 and 50 nm, respectively. The obtained powder was suspended in isopropyl alcohol with addition of appropriate binder and deflocculant. This suspension was used for electrophoretic deposition of YMn2O5 thick films under the high-voltage conditions and electric fields ranging from 250 to 2125 V/cm. The films obtained at 1000 V/cm and higher electric fields showed good adhesion, particle packing, homogeneity and very low porosity. It was shown that the deposition in extremely high electric fields (KC=2125 V/cm) can influence the crystal orientation of the films, resulting in formation of preferentially oriented films. © 2012 Elsevier Ltd and Techna Group S.r.l.