908 resultados para Activity-based costing system
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
A status report of the modelling and simulation work that is being undertaken as part of the TIMES (Totally Integrated More Electric Systems) project is presented. Dynamic power quality simulations have been used to asses the performance of the electrical system of a EMA based actuation system for an Airbus A330 size aircraft, for both low voltage 115 V, and high voltage 230 V three-phase AC systems. The high voltage system is shown to have benefits in terms of power quality and reduced size and weight of equipment.
Resumo:
A continuous multi-step synthesis of 1,2-diphenylethane was performed sequentially in a structured compact reactor. This process involved a Heck C-C coupling reaction followed by the addition of hydrogen to perform reduction of the intermediate obtained in the first step. Both of the reactions were catalysed by microspherical carbon-supported Pd catalysts. Due to the integration of the micro-heat exchanger, the static mixer and the mesoscale packed-bed reaction channel, the compact reactor was proven to be an intensified tool for promoting the reactions. In comparison with the batch reactor, this flow process in the compact reactor was more efficient as: (i) the reaction time was significantly reduced (ca. 7 min versus several hours), (ii) no additional ligands were used and (iii) the reaction was run at lower operational pressure and temperature. Pd leached in the Heck reaction step was shown to be effectively recovered in the following hydrogenation reaction section and the catalytic activity of the system can be mostly retained by reverse flow operation. © 2009 Elsevier Inc. All rights reserved.
Resumo:
This article considers the Internet/Intranet information systems as the tool for distance learning. Author considers the model of the 3-tier WEB based information system, the idea of the language for implementing and customized solution, which includes the original language and processor for fast prototyping and implementing small and middle sized Internet/Intranet information systems.
Resumo:
In this paper we consider two computer systems and the dynamic Web technologies they are using. Different contemporary dynamic web technologies are described in details and their advantages and disadvantages have been shown. Specific applications are developed, clinic and studying systems, and their programming models are described. Finally we implement these two applications in the students education process: Online studying has been tested in the Technical University – Varna, Web based clinic system has been used for practical education of the students in the Medical College - Sofia, branch V. Tarnovo
Resumo:
Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.
Resumo:
A recently introduced inference method based on system replication and an online message passing algorithm is employed to complete a previously suggested compression scheme based on a nonlinear perceptron. The algorithm is shown to approach the information theoretical bounds for compression as the number of replicated systems increases, offering superior performance compared to basic message passing algorithms. In addition, the suggested method does not require fine-tuning of parameters or other complementing heuristic techniques, such as the introduction of inertia terms, to improve convergence rates to nontrivial results. © 2014 American Physical Society.
Resumo:
* The research work reviewed in this paper has been carried out in the context of the Russian Foundation for Basic Research funded project “Adaptable Intelligent Interfaces Research and Development for Distance Learning Systems”(grant N 02-01-81019). The authors wish to acknowledge the co-operation with the Byelorussian partners of this project.
Resumo:
The various questions of creation of integrated development environment for computer training systems are considered in the given paper. The information technologies that can be used for creation of the integrated development environment are described. The different didactic aspects of realization of such systems are analyzed. The ways to improve the efficiency and quality of learning process with computer training systems for distance education are pointed.
Resumo:
The process of training is the most difficult for effective realization through information technologies. Is suggested the methods for the most complete implementation of original techniques of material description, ensuring versatility of development environment and functioning of interactive systems of training process. The given technology requires as the exact description of teaching model, as application of modern methods of development intelligent skills.
Resumo:
Hristo Krushkov, Mariana Krushkova, Victor Atanasov, Margarita Krushkova - The rising of the Bulgarian Higher educational standard is one of the strategic purposes of our country as a member of the European family. The implementation of new scientific methods and modern technological means in the process of education is a precondition for fulfilling this purpose. The study of informatics is making a significant contribution to the creation of a knowledge-based economy. In view of this the informatics has been studied in several departments of the Plovdiv University “Paisii Hilendarski”. However, due to different reasons the majority of the students have difficulties in mastering this discipline. The present report offers an architecture of computer-based system for helping the whole process of education in informatics.
Resumo:
As the Semantic Web is an open, complex and constantly evolving medium, it is the norm, but not exception that information at different sites is incomplete or inconsistent. This poses challenges for the engineering and development of agent systems on the Semantic Web, since autonomous software agents need to understand, process and aggregate this information. Ontology language OWL provides core language constructs to semantically markup resources on the Semantic Web, on which software agents interact and cooperate to accomplish complex tasks. However, as OWL was designed on top of (a subset of) classic predicate logic, it lacks the ability to reason about inconsistent or incomplete information. Belief-augmented Frames (BAF) is a frame-based logic system that associates with each frame a supporting and a refuting belief value. In this paper, we propose a new ontology language Belief-augmented OWL (BOWL) by integrating OWL DL and BAF to incorporate the notion of confidence. BOWL is paraconsistent, hence it can perform useful reasoning services in the presence of inconsistencies and incompleteness. We define the abstract syntax and semantics of BOWL by extending those of OWL. We have proposed reasoning algorithms for various reasoning tasks in the BOWL framework and we have implemented the algorithms using the constraint logic programming framework. One example in the sensor fusion domain is presented to demonstrate the application of BOWL.
Resumo:
Type IA fiber gratings have unusual physical properties compared with other grating types. We compare with performance characteristics of Type IA and Type I Bragg gratings exposed to the effects of Co60 gamma-irradiation. A Bragg peak shift of 190 pm was observed for Type IA gratings written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. This is the largest wavelength shift recorded to date under radiation exposure. The Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing; this can be exploited for the design of a grating based dosimetry system. © 2012 SPIE.
Resumo:
A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed.
Resumo:
Novel g-C3N4/NaTaO3 hybrid nanocomposites have been prepared by a facile ultrasonic dispersion method. Our results clearly show the formation of interface between NaTaO3 and g-C3N4 and further loading of g-C3N4 did not affect the crystal structure and morphology of NaTaO3. The g-C3N4/NaTaO3 nanocomposites exhibited enhanced photocatalytic performance for the degradation of Rhodamine B under UV–visible and visible light irradiation compared to pure NaTaO3 and Degussa P25. Interestingly, the visible light photocatalytic activity is generated due to the loading of g-C3N4. A mechanism is proposed to discuss the enhanced photocatalytic activity based on trapping experiments of photoinduced radicals and holes. Under visible light irradiation, electron excited from the valance band (VB) to conduction band (CB) of g-C3N4 could directly inject into the CB of NaTaO3, making g-C3N4/NaTaO3 visible light driven photocatalyst. Since the as-prepared hybrid nanocomposites possess high reusability therefore it can be promising photocatalyst for environmental applications.