999 resultados para Actinoptychus senarius, biovolume


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of microbiological, biogeochemical and isotope geochemical studies in the Kara Sea are described. Samples for these studies were obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September 2007. The studied area covered the northern, central, and southwestern parts of the Kara Sea and the Obskaya Guba (Ob River estuary). Quantitative characteristics of total bacterial population and activity of microbial processes in the water column and bottom sediments were obtained. Total abundance of bacterioplankton (BP) varied from 250000 cells/ml in the northern Kara Sea to 3000000 cells/ml in the Obskaya Guba. BP abundance depended on concentration of suspensded matter. Net BP production was minimal in the central Kara Sea (up to 0.15-0.2 µg C/l/day) and maximal (0.5-0.75 µg C/l/day) in the Obskaya Guba. Organic material at the majority of stations at the Ob transect predominantly contained light carbon isotopes (-28.0 to -30.18 per mil) of terrigenous origin. Methane concentration in the surface water layer varied from 0.18 to 2.0 µl CH4/l, and methane oxidation rate varied from 0.1 to 100 nl CH4/l/day. Methane concentration in the upper sediment layer varied from 30 to 300 µl CH4/dm**3; rate of methane formation was varied from 44 to 500 nl CH4/dm**3/day and rate of methane oxidation - from 30 to 2000 nl CH4/dm**3/day. Rate of sulfate reduction varied from 4 to 184 µg S/dm**3/day.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copepod fecal pellets are often degraded at high rates within the upper part of the water column. However, the identity of the degraders and the processes governing the degradation remain unresolved. To identify the pellet degraders we collected water from Øresund (Denmark) approximately every second month from July 2004 to July 2005. These water samples were divided into 5 fractions (<0.2, <2, <20, <100, <200 µm) and total (unfractionated). We determined fecal pellet degradation rate and species composition of the plankton from triplicate incubations of each fraction and a known, added amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Øresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 ± 0.49 d**-1) and minimum (0.52 ± 0.14 d**-1) during late winter. Total pellet removal rate ranged from 22% d**-1 (July 2005) to 87% d**-1 (May). Protozooplankton (dinoflagellates and ciliates) in the size range of 20 to 100 µm were the key degraders of the fecal pellets, contributing from 15 to 53% of the total degradation rate. Free-living in situ bacteria did not affect pellet degradation rate significantly; however, culture-originating bacteria introduced in association with the pellets contributed up to 59% of the total degradation rate. An effect of late-stage copepod nauplii (>200 µm) was indicated, but this was not a dominating degradation process. Mesozooplankton did not contribute significantly to the degradation. However, grazing of mesozooplankton on the pellet degraders impacts pellet degradation rate indirectly. In conclusion, protozooplankton seems to include the key organisms for the recycling of copepod fecal pellets in the water column, both through the microbial loop and, especially, by functioning as an effective 'protozoan filter' for fecal pellets.