990 resultados para Acrylic resin materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of curing tip distance and storage time in the kinetics of water diffusion (water sorption-W SP, solubility-W SB, and net water uptake) and color stability of a composite were evaluated. Composite samples were polymerized at different distances (5, 10, and 15 mm) and compared to a control group (0 mm). After desiccation, the specimens were stored in distilled water to evaluate the water diffusion over a 120-day period. Net water uptake was calculated (sum of WSP and WSB). The color stability after immersion in a grape juice was compared to distilled water. Data were submitted to three-way ANOVA/Tukey's test (α = 5%). The higher distances caused higher net water uptake (p < 0.05). The immersion in the juice caused significantly higher color change as a function of curing tip distance and the time (p < 0.05). The distance of photoactivation and storage time provide the color alteration and increased net water uptake of the resin composite tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to present a method which consists in the development of unit cell numerical models for smart composite materials with piezoelectric fibers made of PZT embedded in a non-piezoelectric matrix (epoxy resin). This method evaluates a globally homogeneous medium equivalent to the original composite, using a representative volume element (RVE). The suitable boundary conditions allow the simulation of all modes of the overall deformation arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. The numerical results are compared to other methods reported in the literature and also to results previously published, in order to evaluate the method proposal. In the second step, the method is applied to calculate the equivalent properties for smart composite materials with square cross section fibers. Results of comparison between different combinations of circular and square fiber geometries, observing the influence of the boundary conditions and arrangements are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many. However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research. On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components. This thesis will provide several case-studies with advancements regarding the three limitations mentioned. In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV (Spain). This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). These materials have been little explored as catalysts, although they have a great potential as multifunctional materials. Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by isomorphous substitution of tungsten atoms with other transition metals such as vanadium, niobium and molybdenum. In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by hydrothermal synthesis; these mixed-oxide were fully characterize by a number of physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical route to solve the important issue related to the co-production of glycerin along the biodiesel production chain. Acrylic acid yields as high as 51% were obtained and important structure-reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid and redox properties as well as the in-framework presence of vanadium are fundamental to achieve noteworthy yields into the acid monomer. The overall results reported herein might represent an important contribution for future applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for their physicochemical characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project was born with the aim of developing an environmentally and financially sustainable process to dispose of end-life tires. In this perspective was devised an innovative static bed batch pilot reactor where pyrolysis can be carried out on the whole tires in order to recover energy and materials and simultaneously save the energy costs of their shredding. The innovative plant is also able to guarantee a high safety of the process thanks to the presence of a hydraulic guard. The pilot plant was used to pyrolyze new and end-life tires at temperatures from 400 to 600°C with step of 50°C in presence of steam. The main objective of this research was to evaluate the influence of the maximum process temperature on yields and chemical-physics properties of pyrolysis products. In addition, in view of a scale-up of the plant in continuous mode, the influence of the nature of several different tires as well as the effects of the aging on the final products were studied. The same pilot plant was also used to carry out pyrolysis on polymeric matrix composites in order to obtain chemical feedstocks from the resin degradation together with the recovery of the reinforcement in the form of fibers. Carbon fibers reinforced composites ad fiberglass was treated in the 450-600°C range and the products was fully characterized. A second oxidative step was performed on the pyrolysis solid residue in order to obtain the fibers in a suitable condition for a subsequent re-impregnation in order to close the composite Life Cycle in a cradle-to-cradle approach. These investigations have demonstrated that steel wires, char, carbon and glass fibers recovered in the prototypal plant as solid residues can be a viable alternative to pristine materials, making use of them to obtain new products with a commercial added value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: This study evaluated the initial and the artificially aged push-out bond strength between ceramic and dentin produced by one of five resin cements. METHODS: Two-hundred direct ceramic restorations (IPS Empress CAD) were luted to standardized Class I cavities in extracted human molars using one of four self-adhesive cements (SpeedCEM, RelyX Unicem Aplicap, SmartCem2 and iCEM) or a reference etch-and-rinse resin cement (Syntac/Variolink II) (n=40/cement). Push-out bond strength (PBS) was measured (1) after 24h water storage (non-aged group; n=20/cement) or (2) after artificial ageing with 5000 thermal cycles followed by 6 months humid storage (aged group; n=20/cement). Nonparametrical ANOVA and pairwise Wilcoxon rank-sum tests with Bonferroni-Holm adjustment were applied for statistical analysis. The significance level was set at alpha=0.05. In addition, failure mode and fracture pattern were analyzed by stereomicroscope and scanning electron microscopy. RESULTS: Whereas no statistically significant effect of storage condition was found (p=0.441), there was a significant effect of resin cement (p<0.0001): RelyX Unicem showed significantly higher PBS than the other cements. Syntac/Variolink II showed significantly higher PBS than SmartCEM2 (p<0.001). No significant differences were found between SpeedCEM, SmartCem2, and iCEM. The predominant failure mode was adhesive failure of cements at the dentin interface except for RelyX Unicem which in most cases showed cohesive failure in ceramic. SIGNIFICANCE: The resin cements showed marked differences in push-out bond strength when used for luting ceramic restorations to dentin. Variolink II with the etch-and-rinse adhesive Syntac did not perform better than three of the four self-adhesive resin cements tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to compare eight types of luting agents when used to bond six indirect, laboratory restorative materials to dentin. Cylinders of the six restorative materials (Esteticor Avenir [gold alloy], Tritan [titanium], NobelRondo [feldspathic porcelain], Finesse All-Ceramic [leucite-glass ceramic], Lava [zirconia], and Sinfony [resin composite]) were ground and air-abraded. Cylinders of feldspathic porcelain and glass ceramic were additionally etched with hydrofluoric acid and were silane-treated. The cylinders were luted to ground human dentin with eight luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], and RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37°C for one week, the shear bond strength of the specimens (n=8/group) was measured, and the fracture mode was stereomicroscopically examined. Bond strength data were analyzed with two-factorial analysis of variance (ANOVA) followed by Newman-Keuls' Multiple Range Test (?=0.05). Both the restorative material and the luting agent had a significant effect on bond strength, and significant interaction was noted between the two variables. Zinc phosphate cement and glass ionomer cements produced the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements. Generally, the fracture mode varied markedly with the restorative material. The luting agents had a bigger influence on bond strength between restorative materials and dentin than was seen with the restorative material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: The purpose of this study was to evaluate the activation of resin-modified glass ionomer restorative material (RMGI, Vitremer-3M-ESPE, A3) by halogen lamp (QTH) or light-emitting diode (LED) by Knoop microhardness (KHN) in two storage conditions: 24hrs and 6 months and in two depths (0 and 2 mm). MATERIALS AND METHODS: The specimens were randomly divided into 3 experimental groups (n=10) according to activation form and evaluated in depth after 24h and after 6 months of storage. Activation was performed with QTH for 40s (700 mW/cm2) and for 40 or 20 s with LED (1,200 mW/scm2). After 24 hrs and 6 months of storage at 37°C in relative humidity in lightproof container, the Knoop microhardness test was performed. Statistics Data were analysed by three-way ANOVA and Tukey post-tests (p<0.05). RESULTS: All evaluated factors showed significant differences (p<0.05). After 24 hrs there were no differences within the experimental groups. KHN at 0 mm was significantly higher than 2 mm. After 6 months, there was an increase of microhardness values for all groups, being the ones activated by LED higher than the ones activated by QTH. CONCLUSION: Light-activation with LED positively influenced the KHN for RMGI evaluated after 6 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide–eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H3PO4) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg−1 of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H3PO4 or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. MATERIALS AND METHODS Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RESULTS RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. CONCLUSIONS The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. CLINICAL RELEVANCE When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high irradiances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The aim of this study was to measure the degree of conversion (DC) of five dual-curing resin cements after different curing modes with a second- and a third-generation light-emitting diode (LED) curing unit. Additionally, irradiance of both light curing units was measured at increasing distances and through discs of two glass ceramics for computer-aided design/manufacturing (CAD/CAM). Materials and methods Irradiance and spectra of the Elipar FreeLight 2 (Standard Mode (SM)) and of the VALO light curing unit (High Power Mode (HPM) and Xtra Power Mode (XPM)) were measured with a MARC radiometer. Irradiance was measured at increasing distances (control) and through discs (1.5 to 6 mm thickness) of IPS Empress CAD and IPS e.max CAD. DC of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA was measured with an attenuated total reflectance–Fourier transform infrared spectrometer when self-cured (negative control) or light cured in SM for 40 s, HPM for 32 s, or XPM for 18 s. Light curing was performed directly (positive control) or through discs of either 1.5- or 3-mm thickness of IPS Empress CAD or IPS e.max CAD. DC was analysed with Kruskal–Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). Results Maximum irradiances were 1,545 mW/cm2 (SM), 2,179 mW/cm2 (HPM), and 4,156 mW/cm2 (XPM), and all irradiances decreased by >80 % through discs of 1.5 mm, ≥95 % through 3 mm, and up to >99 % through 6 mm. Generally, self-curing resulted in the lowest DC. For some cements, direct light curing did not result in higher DC compared to when light cured through ceramic discs. For other cements, light curing through ceramic discs of 3 mm generally reduced DC. Conclusions Light curing was favourable for dual-curing cements. Some cements were more susceptible to variations in curing mode than others. Clinical relevance When light curing a given cement, the higher irradiances of the third-generation LED curing unit resulted in similar DC compared to the second-generation one, though at shorter light curing times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To evaluate the effect of a tin-containing fluoride (Sn/F) mouth rinse on microtensile bond strength (μTBS) between resin composite and erosively demineralised dentin. MATERIALS AND METHODS Dentin of 120 human molars was erosively demineralised using a 10-day cyclic de- and remineralisation model. For 40 molars, the model comprised erosive demineralisation only; for another 40, the model included treatment with a NaF solution; and for yet another 40, the model included treatment with a Sn/F mouth rinse. In half of these molars (n = 20), the demineralised organic matrix was continuously removed by collagenase. Silicon carbide paper-ground, non-erosively demineralised molars served as control (n = 20). Subsequently, μTBS of Clearfil SE/Filtek Z250 to the dentin was measured, and failure mode was determined. Additionally, surfaces were evaluated using SEM and EDX. RESULTS Compared to the non-erosively demineralised control, erosive demineralisation resulted in significantly lower μTBS regardless of the removal of demineralised organic matrix. Treatment with NaF increased μTBS, but the level of μTBS obtained by the non-erosively demineralised control was only reached when the demineralised organic matrix had been removed. The Sn/F mouth rinse together with removal of demineralised organic matrix led to significantly higher µTBS than did the non-erosively demineralised control. The Sn/F mouth rinse yielded higher μTBS than did the NaF solution. CONCLUSIONS Treatment of erosively demineralised dentin with a NaF solution or a Sn/F mouth rinse increased the bond strength of resin composite. CLINICAL RELEVANCE Bond strength of resin composite to eroded dentin was not negatively influenced by treatment with a tin-containing fluoride mouth rinse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To investigate the influence of increment thickness on Vickers microhardness (HV) and shear bond strength (SBS) to dentin of a conventional and four bulk fill resin composites. METHODS HV and SBS were determined on specimens of the conventional resin composite Filtek Supreme XTE (XTE) and the bulk fill resin composites SDR (SDR), Filtek Bulk Fill (FBF), x-tra fil (XFIL), and Tetric EvoCeram Bulk Fill (TEBF) after 24h storage. HV was measured either as profiles at depths up to 6mm or at the bottom of 2mm/4mm/6mm thick resin composite specimens. SBS of 2mm/4mm/6mm thick resin composite increments was measured to dentin surfaces of extracted human molars treated with the adhesive system OptiBond FL, and the failure mode was stereomicroscopically determined at 40× magnification. HV profiles and failure modes were descriptively analysed whereas HV at the bottom of resin composite specimens and SBS were statistically analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). RESULTS HV profiles (medians at 2mm/4mm/6mm): XTE 105.6/88.8/38.3, SDR 34.0/35.5/36.9, FBF 36.4/38.7/37.1, XFIL 103.4/103.9/101.9, TEBF 63.5/59.7/51.9. HV at the bottom of resin composite specimens (medians at 2mm/4mm/6mm): XTE (p<0.0001) 105.5>85.5>31.1, SDR (p=0.10) 25.8=21.9=26.0, FBF (p=0.16) 26.6=25.3=28.9, XFIL (p=0.18) 110.5=107.2=101.9, TEBF (p<0.0001) 63.0>54.9>48.2. SBS (MPa, medians at 2mm/4mm/6mm): XTE (p<0.0001) 23.9>18.9=16.7, SDR (p=0.26) 24.6=22.7=23.4, FBF (p=0.11) 21.4=20.3=22.0, x-tra fil (p=0.55) 27.0=24.0=23.6, TEBF (p=0.11) 21.0=20.7=19.0. The predominant SBS failure mode was cohesive failure in dentin. SIGNIFICANCE At increasing increment thickness, HV and SBS decreased for the conventional resin composite but generally remained constant for the bulk fill resin composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To investigate surface roughness and microhardness of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after polishing with three polishing systems. Surface roughness and microhardness were measured immediately after polishing and after six months storage including monthly artificial toothbrushing. Methods: Sixty specimens of Lava Ultimate (3M ESPE) and 60 specimens of VITA ENAMIC (VITA Zahnfabrik) were roughened in a standardized manner and polished with one of three polishing systems (n=20/group): Sof-Lex XT discs (SOFLEX; three-step (medium-superfine); 3M ESPE), VITA Polishing Set Clinical (VITA; two-step; VITA Zahnfabrik), or KENDA Unicus (KENDA; one-step; KENDA Dental). Surface roughness (Ra; μm) was measured with a profilometer and microhardness (Vickers; VHN) with a surface hardness indentation device. Ra and VHN were measured immediately after polishing and after six months storage (tap water, 37°C) including monthly artificial toothbrushing (500 cycles/month, toothpaste RDA ~70). Ra- and VHN-values were analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). Results: For Lava Ultimate, Ra (mean [standard deviation] before/after storage) remained the same when polished with SOFLEX (0.18 [0.09]/0.19 [0.10]; p=0.18), increased significantly with VITA (1.10 [0.44]/1.27 [0.39]; p=0.0001), and decreased significantly with KENDA (0.35 [0.07]/0.33 [0.08]; p=0.03). VHN (mean [standard deviation] before/after storage) decreased significantly regardless of polishing system (SOFLEX: 134.1 [5.6]/116.4 [3.6], VITA: 138.2 [10.5]/115.4 [5.9], KENDA: 135.1 [6.2]/116.7 [6.3]; all p<0.0001). For VITA ENAMIC, Ra (mean [standard deviation] before/after storage) increased significantly when polished with SOFLEX (0.37 [0.18]/0.41 [0.14]; p=0.01) and remained the same with VITA (1.32 [0.37]/1.31 [0.40]; p=0.58) and with KENDA (0.81 [0.35]/0.78 [0.32]; p=0.21). VHN (mean [standard deviation] before/after storage) remained the same regardless of polishing system (SOFLEX: 284.9 [24.6]/282.4 [31.8], VITA: 284.6 [28.5]/276.4 [25.8], KENDA: 292.6 [26.9]/282.9 [24.3]; p=0.42-1.00). Conclusion: Surface roughness and microhardness of Lava Ultimate was more affected by storage and artificial toothbrushing than was VITA ENAMIC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the bond strength to dentin of two recent resin-ceramic materials for computer-aided design/computer-aided manufacturing (CAD/CAM) after 24 hours and after six months storage. Methods and Materials: Ninety cylinders were milled out of Lava Ultimate (3M ESPE) and 90 cylinders out of VITA ENAMIC (VITA Zahnfabrik) (dimension of cylinders: ∅=3.6 mm, h=2 mm). All Lava Ultimate cylinders were sandblasted (aluminium oxide, grain size: 27 μm) and cleaned with ethanol, whereas all VITA ENAMIC cylinders were acid-etched (5% hydrofluoric acid) and cleaned with water-spray. According to the three groups of cements used, the cylinders (n=30/resin-ceramic material) were further pretreated with 1) Scotchbond Universal for RelyX Ultimate (3M ESPE), 2) CLEARFIL Ceramic Primer for PANAVIA F2.0 (Kuraray), or 3) no further pretreatment for Ketac Cem Plus (3M ESPE). The cylinders were then bonded to ground human dentin specimens with 1) Scotchbond Universal and RelyX Ultimate (light-cured), 2) ED PRIMER II and PANAVIA F2.0 (light-cured), or 3) no adhesive system; Ketac Cem Plus (self-cured). Shear bond strength (SBS) was measured after 24 hours for 15 specimens/group and after six months (37°C, 100% humidity) for the other 15 specimens/group. SBS-values were statistically analysed with nonparametric ANOVA followed by exact Wilcoxon rank sum tests (α=0.05). Results: SBS of the two resin-ceramic materials and the three cements after 24 hours and after six months storage are shown in Figure 1. The statistical analysis showed that the duration of storage had a significant effect on SBS of Lava Ultimate for all three cements but had no significant effect on SBS of VITA ENAMIC. For Lava Ultimate SBS-values were (MPa; medians after 24 hours/six months): 13.5/22.5 (p=0.04) for RelyX Ultimate, 11.4/5.8 (p=0.0006) for PANAVIA F2.0, and 0.34/0.09 (p=0.04) for Ketac Cem Plus (Fig. 1). For VITA ENAMIC SBS-values were (MPa; medians after 24 hours/six months): 16.0/21.2 (p=0.10) for RelyX Ultimate, 11.4/14.4 (p=0.06) for PANAVIA F2.0, and 0.43/0.41 (p=0.32) for Ketac Cem Plus (Fig. 1). After 24 hours, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for all three cements (p≥0.37). After six months, there was no significant difference in SBS between Lava Ultimate and VITA ENAMIC for RelyX Ultimate and Ketac Cem Plus (p≥0.07) whereas for PANAVIA F2.0, SBS was significantly lower for Lava Ultimate than for VITA ENAMIC (p<0.0001). Conclusion: SBS of Lava Ultimate was more affected by six months storage and by the cement used than was VITA ENAMIC.