888 resultados para Accuracy of Hotel Feasibility Study Projections
Resumo:
This paper discusses the target localization problem of wireless visual sensor networks. Specifically, each node with a low-resolution camera extracts multiple feature points to represent the target at the sensor node level. A statistical method of merging the position information of different sensor nodes to select the most correlated feature point pair at the base station is presented. This method releases the influence of the accuracy of target extraction on the accuracy of target localization in universal coordinate system. Simulations show that, compared with other relative approach, our proposed method can generate more desirable target localization's accuracy, and it has a better trade-off between camera node usage and localization accuracy.
Resumo:
In the photovoltaic field, the back contact solar cells technology has appeared as an alternative to the traditional silicon modules. This new type of cells places both positive and negative contacts on the back side of the cells maximizing the exposed surface to the light and making easier the interconnection of the cells in the module. The Emitter Wrap-Through solar cell structure presents thousands of tiny holes to wrap the emitter from the front surface to the rear surface. These holes are made in a first step over the silicon wafers by means of a laser drilling process. This step is quite harmful from a mechanical point of view since holes act as stress concentrators leading to a reduction in the strength of these wafers. This paper presents the results of the strength characterization of drilled wafers. The study is carried out testing the samples with the ring on ring device. Finite Element models are developed to simulate the tests. The stress concentration factor of the drilled wafers under this load conditions is determined from the FE analysis. Moreover, the material strength is characterized fitting the fracture stress of the samples to a three-parameter Weibull cumulative distribution function. The parameters obtained are compared with the ones obtained in the analysis of a set of samples without holes to validate the method employed for the study of the strength of silicon drilled wafers.
Resumo:
Se establece un metodología para evaluar la cartografía de capas GIS
Resumo:
Se proponen novedosas fórmulas para evaluar la certeza de la cartografía
Resumo:
This paper presents the design and implementation of an intelligent control system based on local neurofuzzy models of the milling process relayed through an Ehternet-based application. Its purpose is to control the spindle torque of a milling process by using an internal model control paradigm to modify the feed rate in real time. The stabilization of cutting cutting torque is especially necessary in milling processes such as high-spedd roughing of steel moulds and dies tha present minor geometric uncertainties. Thus, maintenance of the curring torque increaes the material removal rate and reduces the risk of damage due to excessive spindle vibration, a very sensitive and expensive component in all high-speed milling machines. Torque control is therefore an interesting challenge from an industrial point of view.
Resumo:
Accuracy in the liquid hydrocarbons custody transfer is mandatory because it has a great economic impact. By far the most accurate meter is the positive displacement (PD) meter. Increasing such an accuracy may adversely affect the cost of the custody transfer, unless simple models are developed in order to lower the cost, which is the purpose of this work. PD meter consists of a fixed volume rotating chamber. For each turn a pulse is counted, hence, the measured volume is the number of pulses times the volume of the chamber. It does not coincide with the real volume, so corrections have to be made. All the corrections are grouped by a meter factor. Among corrections highlights the slippage flow. By solving the Navier-Stokes equations one can find an analytical expression for this flow. It is neither easy nor cheap to apply straightforward the slippage correction; therefore we have made a simple model where slippage is regarded as a single parameter with dimension of time. The model has been tested for several PD meters. In our careful experiments, the meter factor grows with temperature at a constant pace of 8?10?5?ºC?1. Be warned
Resumo:
The applicability of a portable NIR spectrometer for estimating the °Brix content of grapes by non-destructive measurement has been analysed in field. The NIR spectrometer AOTF-NIR Luminar 5030, from Brimrose, was used. The spectrometer worked with a spectral range from 1100 to 2300 nm. A total of 600 samples of Cabernet Sauvignon grapes, belonging to two vintages, were measured in a non-destructive way. The specific objective of this research is to analyse the influence of the statistical treatment of the spectra information in the development of °Brix estimation models. Different data pretreatments have been tested before applying multivariate analysis techniques to generate estimation models. The calibration using PLS regression applied to spectra data pretreated with the MSC method (multiplicative scatter correction) has been the procedure with better results. Considering the models developed with data corresponding to the first campaign, errors near to 1.35 °Brix for calibration (SEC = 1.36) and, about 1.50 °Brix for validation (SECV = 1.52) were obtained. The coefficients of determination were R2 = 0.78 for the calibration, and R2 = 0.77 for the validation. In addition, the great variability in the data of the °Brix content for the tested plots was analysed. The variation of °Brix on the plots was up to 4 °Brix, for all varieties. This deviation was always superior to the calculated errors in the generated models. Therefore, the generated models can be considered to be valid for its application in field. Models were validated with data corresponding to the second campaign. In this sense, the validation results were worse than those obtained in the first campaign. It is possible to conclude in the need to realize an adjustment of the spectrometer for each season, and to develop specific predictive models for every vineyard.
Resumo:
Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.
Resumo:
Two objects with homologous landmarks are said to be of the same shape if the configuration of landmarks of one object can be exactly matched with that of the other by translation, rotation/reflection, and scaling. In an earlier paper, the authors proposed statistical analysis of shape by considering logarithmic differences of all possible Euclidean distances between landmarks. Tests of significance for differences in the shape of objects and methods of discrimination between populations were developed with such data. In the present paper, the corresponding statistical methodology is developed by triangulation of the landmarks and by considering the angles as natural measurements of shape. This method is applied to the study of sexual dimorphism in hominids.