973 resultados para Absorption and beam attenuation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the beneficial effects of Mediterranean-type diets, which are rich in olive oil, a good source of monounsaturated fatty acids (MUFAs), are generally accepted, little is known about the effects of long-term dietary MUFA intake on postprandial lipoprotein metabolism and hemostasis. This study used a single-blind, randomized, crossover design to investigate the relative effects of a long-term dietary olive oil intervention and a control [saturated fatty acid (SFA)-enriched] diet on postprandial triacylglycerol metabolism and factor VII activity. The postprandial response to a standard test meal was investigated in 23 healthy men who adhered to both diets for 8 wk. cis-MUFAs were successfully substituted for SFAs in the MUFA diet without affecting total dietary fat or energy intakes. The long-term dietary MUFA intervention significantly reduced plasma and LDL-cholesterol concentrations (P = 0.01). Postprandial triacylglycerol concentrations were significantly greater in the early postprandial period after the MUFA diet (P = 0.003). Postprandial factor VII activation and the concentration of the factor VII antigen were significantly lower after the MUFA diet (P = 0.04 and P = 0 006, respectively). This study showed that isoenergetic substitution of MUFAs for SFAs reduces plasma cholesterol and reduces the degree of postprandial factor VII activation. The alterations in the postprandial triacylglycerol response suggest a greater rate of dietary fat absorption and postprandial triacylglycerol metabolism after a diet rich in MUFAs. This study presents new insights into the biochemical basis of the beneficial effects associated with long-term dietary MUFA consumption, which may explain the lower rates of coronary mortality in Mediterranean regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro batch culture fermentations were conducted with grape seed polyphenols and human faecal microbiota, in order to monitor both changes in precursor flavan-3-ols and the formation of microbial-derived metabolites. By the application of UPLC-DAD-ESI-TQ MS, monomers, and dimeric and trimeric procyanidins were shown to be degraded during the first 10 h of fermentation, with notable inter-individual differences being observed between fermentations. This period (10 h) also coincided with the maximum formation of intermediate metabolites, such as 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)-valeric acid, and of several phenolic acids, including 3-(3,4-dihydroxyphenyl)-propionic acid, 3,4-dihydroxyphenylacetic acid, 4-hydroxymandelic acid, and gallic acid (5–10 h maximum formation). Later phases of the incubations (10–48 h) were characterised by the appearance of mono- and non-hydroxylated forms of previous metabolites by dehydroxylation reactions. Of particular interest was the detection of γ-valerolactone, which was seen for the first time as a metabolite from the microbial catabolism of flavan-3-ols. Changes registered during fermentation were finally summarised by a principal component analysis (PCA). Results revealed that 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone was a key metabolite in explaining inter-individual differences and delineating the rate and extent of the microbial catabolism of flavan-3-ols, which could finally affect absorption and bioactivity of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olive oil, an important component of the Mediterranean diet, is rich in polyphenols and is known to possess positive health effects relative to other dietary fats. In addition, the leaves of the olive plant (Olea europaea) contain similar phenolics (oleuropein, luteolin-7-glucoside, apigenin-7-glucoside, verbascoside and hydroxytyrosol) to those of olives and olive oil, although at higher concentrations. For example, the most abundant is the secoiridoid, oleuropein, representing 1–14% of olive leaf weight vs. 0.005–0.12% in olive oil. Although currently considered a waste product of the olive oil industry, recent research has suggested beneficial effects of phenolic-rich olive leaf extracts (OLE) in modifying cardiovascular risk biomarkers such as blood pressure, hyperglycaemia, oxidative stress and inflammation, as well as improving vascular function and lipid profiles. Despite this, data regarding the biological actions of OLE has mostly derived from animal, in vitro and ex vivo studies, with limited evidence deriving from human trials. Although the absorption and metabolism of olive oil phenolics has been investigated, less is known about the bioavailability of phenolics from OLE, limiting the interpretation of existing in vitro and ex vivo data. The current review will begin by describing the phenolic composition of olive leaves in comparison with that of the better studied olive oil. It will then review the effects of OLE on cardiovascular risk factors, covering both animal and human studies and will end by considering potential mechanisms of action

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and structural characterization of a novel oxoperoxovanadium(v) complex [VO(O-2)(PAH)-(phen)] containing the ligands 2-phenylacetohydroxamic acid (PAHH) and 1,10-phenanthroline (phen) has been accomplished. The oxoperoxovanadium(v) complex was found to mimic both vanadate-dependent haloperoxidase (VHPO) activity as well as nuclease activity through effective interaction with DNA. The complex is the first example of a structurally characterized stable oxoperoxovanadium(v) complex with a coordinated bi-dentate hydroximate moiety (-CONHO-) from 2-phenylacetohydroximate (PAH). The oxoperoxovanadium(v) complex has been used as catalyst for the peroxidative bromination reaction of some unsaturated alcohols (e.g. 4-pentene-1-ol, 1-octene-3-ol and 9-decene-1-ol) in the presence of H2O2 and KBr. The catalytic products have been characterized by GC-MS analysis and spectrophotometric methods. The DNA binding of this complex has been established with CT DNA whereas the DNA cleavage was demonstrated with plasmid DNA. The interactions of the complex with DNA have been monitored by electronic absorption and fluorescence emission spectroscopy. Viscometric measurements suggest that the compound is a DNA intercalator. The nuclease activity of this complex was confirmed by gel electrophoresis studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global atmospheric electric circuit is driven by thunderstorms and electrified rain/shower clouds and is also influenced by energetic charged particles from space. The global circuit maintains the ionosphere as an equipotential at∼+250 kV with respect to the good conducting Earth (both land and oceans). Its “load” is the fair weather atmosphere and semi-fair weather atmosphere at large distances from the disturbed weather “generator” regions. The main solar-terrestrial (or space weather) influence on the global circuit arises from spatially and temporally varying fluxes of galactic cosmic rays (GCRs) and energetic electrons precipitating from the magnetosphere. All components of the circuit exhibit much variability in both space and time. Global circuit variations between solar maximum and solar minimum are considered together with Forbush decrease and solar flare effects. The variability in ion concentration and vertical current flow are considered in terms of radiative effects in the troposphere, through infra-red absorption, and cloud effects, in particular possible cloud microphysical effects from charging at layer cloud edges. The paper identifies future research areas in relation to Task Group 4 of the Climate and Weather of the Sun-Earth System (CAWSES-II) programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to make best use of the opportunities provided by space missions such as the Radiation Belt Storm Probes, we determine the response of complementary subionospheric radiowave propagation measurements (VLF), riometer absorption measurements (CNA), and GPS-produced total electron content (vTEC) to different energetic electron precipitation (EEP). We model the relative sensitivity and responses of these instruments to idealised monoenergetic beams of precipitating electrons, and more realistic EEP spectra chosen to represent radiation belts and substorm precipitation. In the monoenergetic beam case, we find riometers are more sensitive to the same EEP event occurring during the day than during the night, while subionospheric VLF shows the opposite relationship, and the change in vTEC is independent. In general, the subionospheric VLF measurements are much more sensitive than the other two techniques for EEP over 200 keV, responding to flux magnitudes two-three orders of magnitude smaller than detectable by a riometer. Detectable TEC changes only occur for extreme monoenergetic fluxes. For the radiation belt EEP case, clearly detectable subionospheric VLF responses are produced by daytime fluxes that are ~10 times lower than required for riometers, while nighttime fluxes can be 10,000 times lower. Riometers are likely to respond only to radiation belt fluxes during the largest EEP events and vTEC is unlikely to be significantly disturbed by radiation belt EEP. For the substorm EEP case both the riometer absorption and the subionospheric VLF technique respond significantly, as does the change in vTEC, which is likely to be detectable at ~3-4 TECu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the operational Sea Surface Temperature (SST) products derived from satellite infrared radiometry use multi-spectral algorithms. They show, in general, reasonable performances with root mean square (RMS) residuals around 0.5 K when validated against buoy measurements, but have limitations, particularly a component of the retrieval error that relates to such algorithms' limited ability to cope with the full variability of atmospheric absorption and emission. We propose to use forecast atmospheric profiles and a radiative transfer model to simulate the algorithmic errors of multi-spectral algorithms. In the practical case of SST derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), we demonstrate that simulated algorithmic errors do explain a significant component of the actual errors observed for the non linear (NL) split window algorithm in operational use at the Centre de Météorologie Spatiale (CMS). The simulated errors, used as correction terms, reduce significantly the regional biases of the NL algorithm as well as the standard deviation of the differences with drifting buoy measurements. The availability of atmospheric profiles associated with observed satellite-buoy differences allows us to analyze the origins of the main algorithmic errors observed in the SEVIRI field of view: a negative bias in the inter-tropical zone, and a mid-latitude positive bias. We demonstrate how these errors are explained by the sensitivity of observed brightness temperatures to the vertical distribution of water vapour, propagated through the SST retrieval algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal fatty acid-binding protein gene is proposed as a candidate gene for diabetes because the protein it codes is involved in fatty acid absorption and metabolism. This study investigates the association of the Ala54Thr variant of the intestinal fatty acid-binding protein gene on type 2 diabetes mellitus and other related metabolic traits in Asian Indians. Ala54Thr polymorphism was genotyped by using polymerase chain reaction-restriction fragment length polymorphism in unrelated 773 type 2 diabetic and 899 normal glucose-tolerant (NGT) subjects, randomly chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in South India. The Ala54Thr polymorphism was not associated with type 2 diabetes mellitus or obesity. However, genotype-phenotype study revealed that the NGT subjects carrying the Thr54 allele had significantly higher 2-hour plasma glucose (P = .007), glycated hemoglobin (P = .004), 2-hour insulin (P = .027), and fasting low-density lipoprotein cholesterol (P = .032) levels compared with those with the Ala54 allele. Normal glucose-tolerant subjects with Ala54Thr and Thr54Thr genotypes had significantly higher fasting serum triglyceride levels (P = .003) compared with those with Ala54Ala. The subjects were stratified into those with hypertriglyceridemia (serum triglyceride levels >or=150 mg/dL) and those without. The odds ratio for hypertriglyceridemia for the individuals carrying the Ala54Thr genotype was 1.491 (95% confidence interval [CI], 1.22-1.83, P < .0001), and for those carrying the Thr54Thr genotype, it was 1.888 (95% CI, 1.34-2.67; P < .0001). Subjects were also stratified into those with metabolic syndrome (MS) and those without, according to modified Adult Treatment Panel III guidelines. The odds ratio (adjusted for age and sex) for MS for the individuals carrying the Ala54Thr genotype was 1.240 (95% CI, 1.02-1.51; P = .03), whereas for those carrying the Thr54Thr genotype, it was 1.812 (95% CI, 1.28-2.57; P = .001). Carriers of the Thr54 allele have associations with MS and hypertriglyceridemia in this urban South Indian population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiative forcing values have been calculated for 11 halogenated compounds which are in current use or which have been suggested as possible replacements for the chlorofluorocarbons. Absorption cross-sections measured over a range of atmospheric temperature and pressure conditions as part of a multi-laboratory programme have been used together with a narrow band radiative transfer model. We provide a “best estimate” radiative forcing taking into account the likely vertical profile of the gas in each case. The Global Warming Potential over a variety of time horizons has also been calculated where the lifetime is available. We present the first such information for 1,2-dichloroethane. For chloroform our radiative forcing is 5 times higher than the value used in previous assessments, possibly because these ignored the effect of absorption outside the 800–1200 cm−1 “window”. For several of the other compounds considered here, our forcing is between 10 and 30% lower than previous assessments. The perfluorocarbons have been found to have large global warming potentials, many times that of CFC-11, due to both strong absorption and long lifetimes. The importance of absorption features at wavenumbers below 800 cm−1 and the effect of temperature variations in absorption cross-section on the radiative forcing are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, nBu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [nBu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV–vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc+, followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO22+. NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8]4– is delocalized over all NCS– ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8]4– (An = Th, U) and [UO2(NCS)5]3– has been explored by a combination of DFT and QTAIM analysis, and the U–N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)–NCS ion is more ionic than what was found for U(IV)–Cl complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.