879 resultados para Ability of innovation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To understand the journey of advanced prostate cancer patients for supporting development of an innovative patient journey browser. Background: Prostate cancer is one of the common cancers in Australia. Due to the chronic nature of the disease, it is important to have effective disease management strategy and care model. Multi-disciplinary care is a well-proven approach for chronic disease management. The Multi-disciplinary team (MDT) can function more effectively if all the required information is available for the clinical decision support. The development of innovative technology relies on an accurate understanding of the advanced prostate cancer patient’s journey over a prolonged period. This need arises from the fact that advanced prostate cancer patients may follow various treatment paths and change their care providers. As a result of this, it is difficult to understand the actual sources of patient’s clinical records and their treatment patterns. The aim of the research is to understand variable sources of clinical records, treatment patterns, alternative therapies, over the counter (OTC) medications of advanced prostate cancer patients. This study provides better and holistic understanding of advanced prostate cancer journey. Methods: The study was conducted through an on-line survey developed to seek and analyse the responses from the participants. The on-line questionnaire was carefully developed through consultations with the clinical researchers at the Australian Prostate Cancer Research Centre-Queensland, prostate cancer support group representatives and health informaticians at the Australian e-Health Research Centre. The non-identifying questionnaire was distributed to the patients through prostate cancer support groups in Queensland, Australia. The pilot study was carried out between August 2010 and December 2010. Results: The research made important observations about the advanced prostate cancer journey. It showed that General Practitioner (GP) was the common source of patient’s clinical records (41%) followed by Urologist (14%) and other clinicians (14%). The data analysis also showed that selenium was the common complementary supplement (55%) used by the patients and about 48% patients did not use any OTC drugs. The most common OTC used by the patients was Paracetamol (about 45%). Conclusion: The results have provided a foundation to the architecture of the proposed technology solution. The outcomes of this study are incorporated in design of the proposed patient journey browser system. A basic version of the system is currently being used at the advanced prostate cancer MDT meetings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The absorptive capacity of organisations is one of the key drivers of innovation performance in any industry. This research seeks to refine our understanding of the relationship between absorptive capacity and innovation performance, with a focus on characterising the absorptive capacity of the different participant groups within the Australian road industry supply chain. One of the largest and most comprehensive surveys ever undertaken of innovation in road construction was completed in 2011 by the Queensland University of Technology (QUT), based on the Australian road industry. The survey of over 200 construction industry participants covered four sectors, comprising suppliers (manufacturers and distributors), consultants (engineering consultants), contractors (head and subcontractors) and clients (state government road agencies). The survey measured the absorptive capacity and innovation activity exhibited by organisations within each of these participant groups, using the perceived importance of addressing innovation obstacles as a proxy for innovation activity. One of the key findings of the survey is about the impact of participant competency on product innovation activity. The survey found that the absorptive capacity of industry participants had a significant and positive relationship with innovation activity. Regarding the distribution of absorptive capacity, the results indicate that suppliers are more likely to have high levels of absorptive capacity than the other participant groups, with 32% of suppliers showing high absorptive capacity, ahead of contractors (18%), consultants (11%), and clients (7%). These results support the findings of previous studies in the literature and suggest the importance of policies to enhance organisational learning, particularly in relation to openness to new product ideas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability of poly(acrylic acid) (PAA) with different end groups and molar masses prepared by Atom Transfer Radical Polymerization (ATRP) to inhibit the formation of calcium carbonate scale at low and elevated temperatures was investigated. Inhibition of CaCO3 deposition was affected by the hydrophobicity of the end groups of PAA, with the greatest inhibition seen for PAA with hydrophobic end groups of moderate size (6–10 carbons). The morphologies of CaCO3 crystals were significantly distorted in the presence of these PAAs. The smallest morphological change was in the presence of PAA with long hydrophobic end groups (16 carbons) and the relative inhibition observed for all species were in the same order at 30 °C and 100 °C. As well as distorting morphologies, the scale inhibitors appeared to stabilize the less thermodynamically favorable polymorph, vaterite, to a degree proportional to their ability to inhibit precipitation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study attempts to develop a better understanding of the challenges of knowledge integration (KI) within the innovation process in Small and Medium Enterprises (SMEs). Using several case studies, this study investigates how knowledge integration may be managed within the context of innovation in SMEs. The research places particular focus on identifying the challenges of knowledge integration in SMEs in relation to three aspects of knowledge integration activities, namely knowledge identification, knowledge acquisition, and knowledge sharing. Four distinct tasks emerged in the knowledge integration process, namely team building capability, capturing tacit knowledge, role of knowledge management (KM) systems, and technological systemic integration. The paper suggests that managing knowledge integration in SMEs can be best managed by focusing on these four tasks, which in turn will lead to innovation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication \[Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduction (e.g., \[M - H](-), \[M - 2H](2-), \[M + H](+), \[M + Na](+), \[M + NH4](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Built environment design around the world faces a number of 21st Century challenges such as rising urban heat island effect and rising pollution, which are further worsened by consequences of climate change and increasing urban populations. Such challenges have caused cities around the globe to investigate options that can help to significantly reduce the environmental pressures from current and future development, requiring new areas of innovation. One such area is ‘Biophilic Urbanism’, which refers to the use of natural elements as design features in urban centres to assist efforts to address climate change issues in rapidly growing economies. Singapore is an illustration of a thriving economy that exemplifies the value of embedding nature into its built environment. The significance of urban green space has been recognised in Singapore as early as the 1960s when Lee Kuan Yew embarked on the ‘Garden City’ concept. 50 years later, Singapore has achieved its Garden City goal and is now entering a new era of sustainability, to create a ‘City in a Garden’. Although the economics of such efforts is not entirely understood, the city of Singapore has continued to pursue visions of becoming a biophilic city. Indeed, there appears to be important lessons to be learned from a city that has challenged the preconceived notion that protecting vegetation in a city is not economically viable. Hence, this paper will discuss the case study of Singapore to highlight the drivers, along with the economic considerations identified along the way. The conclusions have implications for expanding the notion of biophilic urbanism, particularly in the Australian context by discussing the lessons learned from this city. The research is part of Sustainable Built Environment National Research Centre, and has been developed in collaboration with the Curtin University Sustainability Policy Institute.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Blast mats that can be retrofitted to the floor of military vehicles are considered to reduce the risk of injury from under‐vehicle explosions. Anthropometric test devices (ATDs) are validated for use only in the seated position. The aim of this study was to use a traumatic injury simulator fitted with 3 different blast mats in order to assess the ability of 2 ATD designs to evaluate the protective capacity of the mats in 2 occupant postures under 2 severities. Tests were performed for each combination of mat design, ATD, severity and posture using an antivehicle under‐belly injury simulator. The differences between mitigation systems were larger under the H‐III compared to the MiL‐Lx. There was little difference in how the 2 ATDs and how posture ranked the mitigation systems. Results from this study suggest that conclusions obtained by testing in the seated position can be extrapolated to the standing. However, the different percentage reductions observed in the 2 ATDs suggests different levels of protection. It is therefore unclear which ATD should be used to assess such mitigation systems. A correlation between cadavers and ATDs on the protection offered by blast mats is required in order to elucidate this issue.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper discusses a model of the civil aviation reg- ulation framework and shows how the current assess- ment of reliability and risk for piloted aircraft has limited applicability for Unmanned Aircraft Systems (UAS) with high levels of autonomous decision mak- ing. Then, a new framework for risk management of robust autonomy is proposed, which arises from combining quantified measures of risk with normative decision making. The term Robust Autonomy de- scribes the ability of an autonomous system to either continue or abort its operation whilst not breaching a minimum level of acceptable safety in the presence of anomalous conditions. The decision making associ- ated with risk management requires quantifying prob- abilities associated with the measures of risk and also consequences of outcomes related to the behaviour of autonomy. The probabilities are computed from an assessment under both nominal and anomalous sce- narios described by faults, which can be associated with the aircraft’s actuators, sensors, communication link, changes in dynamics, and the presence of other aircraft in the operational space. The consequences of outcomes are characterised by a loss function which rewards the certification decision