974 resultados para Abdülhamid--II, Sultan of the Turks--1842-1918


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosin II heavy chain (MHC) specific protein kinase C (MHC-PKC), isolated from Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cyclic AMP. Immunoprecipitation of MHC-PKC revealed that it resides as a complex with several proteins. We show herein that one of these proteins is a homologue of the 14–3-3 protein (Dd14–3-3). This protein has recently been implicated in the regulation of intracellular signaling pathways via its interaction with several signaling proteins, such as PKC and Raf-1 kinase. We demonstrate that the mammalian 14–3-3 ζ isoform inhibits the MHC-PKC activity in vitro and that this inhibition is carried out by a direct interaction between the two proteins. Furthermore, we found that the cytosolic MHC-PKC, which is inactive, formed a complex with Dd14–3-3 in the cytosol in a cyclic AMP-dependent manner, whereas the membrane-bound active MHC-PKC was not found in a complex with Dd14–3-3. This suggests that Dd14–3-3 inhibits the MHC-PKC in vivo. We further show that MHC-PKC binds Dd14–3-3 as well as 14–3-3ζ through its C1 domain, and the interaction between these two proteins does not involve a peptide containing phosphoserine as was found for Raf-1 kinase. Our experiments thus show an in vivo function for a member of the 14–3-3 family and demonstrate that MHC-PKC interacts directly with Dd14–3-3 and 14–3-3ζ through its C1 domain both in vitro and in vivo, resulting in the inhibition of the kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the electronically excited state of the isolated reaction center of photosystem II with high-resolution fluorescence spectroscopy at 5 K and compared the obtained spectral features with those obtained earlier for the primary electron donor. The results show that there is a striking resemblance between the emitting and charge-separating states in the photosystem II reaction center, such as a very similar shape of the phonon wing with characteristic features at 19 and 80 cm−1, almost identical frequencies of a number of vibrational modes, a very similar double-Gaussian shape of the inhomogeneous distribution function, and relatively strong electron-phonon coupling for both states. We suggest that the emission at 5 K originates either from an exciton state delocalized over the inactive branch of the photosystem or from a fraction of the primary electron donor that is long-lived at 5 K. The latter possibility can be explained by a distribution of the free energy difference of the primary charge separation reaction around zero. Both possibilities are in line with the idea that the state that drives primary charge separation in the reaction center of photosystem II is a collective state, with contributions from all chlorophyll molecules in the central part of the complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-level expression of the human growth hormone (hGH) gene is limited to somatotrope and lactosomatotrope cells of the anterior pituitary. We previously identified a locus control region (LCR) for the hGH gene composed of four tissue-specific DNase I-hypersensitive sites (HS) located between −14.6 kb and −32 kb 5′ to the hGH transcription start site that is responsible for establishing a physiologically regulated chromatin domain for hGH transgene expression in mouse pituitary. In the present study we demonstrated that the LCR mediates somatotrope and lactosomatotrope restriction on an otherwise weakly and diffusely expressed hGH transgene. The subregion of the LCR containing the two pituitary-specific HS, HSI and HSII (−14.6 to −16.2 kb relative to the hGH promoter and denoted HSI,II), was found to be sufficient for mediating somatotrope and lactosomatotrope restriction, for appropriately timed induction of hGH transgene expression between embryonic days 15.5 and 16.5, and for selective extinction of hGH expression in mature lactotropes. When studied by cell transfection, the HSI,II fragment selectively enhanced transcription in a presomatotrope-derived cell line, although at levels (2- to 3-fold) well below that seen in vivo. The LCR activity of the HSI,II element was therefore localized by scoring transgene expression in fetal founder pituitaries at embryonic day 18.5. The data from these studies indicated that a 404-bp segment of the HSI,II region encodes a critical subset of LCR functions, including the establishment of a productive chromatin environment, cell-specific restriction and enhancement of expression, and appropriately timed induction of the hGH transgene during embryonic development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urotensin II (UII) is a cyclic peptide initially isolated from the caudal neurosecretory system of teleost fish. Subsequently, UII has been characterized from a frog brain extract, indicating that a gene encoding a UII precursor is also present in the genome of a tetrapod. Here, we report the characterization of the cDNAs encoding frog and human UII precursors and the localization of the corresponding mRNAs. In both frog and human, the UII sequence is located at the C-terminal position of the precursor. Human UII is composed of only 11 amino acid residues, while fish and frog UII possess 12 and 13 amino acid residues, respectively. The cyclic region of UII, which is responsible for the biological activity of the peptide, has been fully conserved from fish to human. Northern blot and dot blot analysis revealed that UII precursor mRNAs are found predominantly in the frog and human spinal cord. In situ hybridization studies showed that the UII precursor gene is actively expressed in motoneurons. The present study demonstrates that UII, which has long been regarded as a peptide exclusively produced by the urophysis of teleost fish, is actually present in the brain of amphibians and mammals. The fact that evolutionary pressure has acted to conserve fully the biologically active sequence of UII suggests that the peptide may exert important physiological functions in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T lymphocyte clones, generated from mice immunized with the methylcholanthrene-induced fibrosarcoma Meth A (H-2d), are restricted by I-Ed and recognize a unique antigen on Meth A. The antigen has been purified and characterized as the ribosomal protein L11. The antigenic epitope is contained within the sequence EYELRKHNFSDTG and is generated by substitution of Asn by His (italic) caused by a single point mutation. The tumor contains the wild-type and the mutated alleles. Immunization of BALB/cJ mice with the mutated epitope but not with the wild-type epitope protects mice against a subsequent challenge with the Meth A sarcoma. Adoptive transfer of CD4+ clones into BALB/c mice renders the mice specifically resistant to Meth A sarcoma. The mutated L11 epitope is thus shown to be an immunoprotective epitope in vivo by several criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branch site (BS). We find that these upstream sequences are essential for stable binding of U2 to the branch region, and for U2/U6 helix II formation, but not for initial U2/BS pairing. We also show that non-functional upstream sequences cause U2 snRNA stem–loop IIa to be exposed to dimethylsulfate modification, perhaps reflecting a U2 snRNA conformational change and/or loss of SF3b proteins. Our data suggest that initial binding of U2 snRNP to the BS region must be stabilized by an interaction with upstream sequences before U2/U6 helix II can form or U2 stem–loop IIa can participate in spliceosome assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have changed the potential phosphorylation site, a threonine residue at position 2 of the D2 polypeptide of the photosystem II complex of Chlamydomonas reinhardtii, to alanine, valine, aspartate, proline, glycine, or glutamate. Mutants with neutral amino acid changes did not display any phenotype with regard to photoautotrophic growth, light sensitivity, fluorescence transients, or photoinhibition. Pulse labeling of these mutants with 32P indicated that a phosphorylated protein of the same size as D2 is absent in these mutants, suggesting that threonine-2 is indeed the unique phosphorylation site of D2. In contrast, mutants in which threonine-2 has been replaced with acidic residues are deficient in photosystem II. Use of chimeric genes containing the psbD 5′-untranslated region revealed that the initiation of translation was not affected in these mutants, but the mutations interfered with a later step of D2 synthesis and accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) α1S subunit is responsible for bidirectional-signaling interactions with the ryanodine receptor (RyR1): transmitting an orthograde, excitation–contraction (EC) coupling signal to RyR1 and receiving a retrograde, current-enhancing signal from RyR1. Previously, several reports argued for the importance of two distinct regions of the skeletal II-III loop (residues R681–L690 and residues L720–Q765, respectively), claiming for each a key function in DHPR–RyR1 communication. To address whether residues 720–765 of the II-III loop are sufficient to enable skeletal-type (Ca2+ entry-independent) EC coupling and retrograde interaction with RyR1, we constructed a green fluorescent protein (GFP)-tagged chimera (GFP-SkLM) having rabbit skeletal (Sk) DHPR sequence except for a II-III loop (L) from the DHPR of the house fly, Musca domestica (M). The Musca II-III loop (75% dissimilarity to α1S) has no similarity to α1S in the regions R681–L690 and L720–Q765. GFP-SkLM expressed in dysgenic myotubes (which lack endogenous α1S subunits) was unable to restore EC coupling and displayed strongly reduced Ca2+ current densities despite normal surface expression levels and correct triad targeting (colocalization with RyR1). Introducing rabbit α1S residues L720–L764 into the Musca II-III loop of GFP-SkLM (substitution for Musca DHPR residues E724–T755) completely restored bidirectional coupling, indicating its dependence on α1S loop residues 720–764 but its independence from other regions of the loop. Thus, 45 α1S-residues embedded in a very dissimilar background are sufficient to restore bidirectional coupling, indicating that these residues may be a site of a protein–protein interaction required for bidirectional coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalized epilepsy with febrile seizures plus (GEFS+), a clinical subset of febrile seizures (FS), is characterized by frequent episodes beyond 6 years of age (FS+) and various types of subsequent epilepsy. Mutations in β1 and αI-subunit genes of voltage-gated Na+ channels have been associated with GEFS+1 and 2, respectively. Here, we report a mutation resulting in an amino acid exchange (R187W) in the gene encoding the α-subunit of neuronal voltage-gated Na+ channel type II (Nav1.2) in a patient with FS associated with afebrile seizures. The mutation R187W occurring on Arg187, a highly conserved residue among voltage-gated Na+ channels, was not found in 224 alleles of unaffected individuals. Whole-cell patch clamp recordings on human embryonic kidney (HEK) cells expressing a rat wild-type (rNav1.2) and the corresponding mutant channels showed that the mutant channel inactivated more slowly than wild-type whereas the Na+ channel conductance was not affected. Prolonged residence in the open state of the R187W mutant channel may augment Na+ influx and thereby underlie the neuronal hyperexcitability that induces seizure activity. Even though a small pedigree could not show clear cosegregation with the disease phenotype, these findings strongly suggest the involvement of Nav1.2 in a human disease and propose the R187W mutation as the genetic defect responsible for febrile seizures associated with afebrile seizures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tryptases, the predominant serine proteinases of human mast cells, have recently been implicated as mediators in the pathogenesis of allergic and inflammatory conditions, most notably asthma. Their distinguishing features, their activity as a heparin-stabilized tetramer and resistance to most proteinaceous inhibitors, are perfectly explained by the 3-Å crystal structure of human βII-tryptase in complex with 4-amidinophenylpyruvic acid. The tetramer consists of four quasiequivalent monomers arranged in a flat frame-like structure. The active centers are directed toward a central pore whose narrow openings of approximately 40 Å × 15 Å govern the interaction with macromolecular substrates and inhibitors. The tryptase monomer exhibits the overall fold of trypsin-like serine proteinases but differs considerably in the conformation of six surface loops arranged around the active site. These loops border and shape the active site cleft to a large extent and form all contacts with neighboring monomers via two distinct interfaces. The smaller of these interfaces, which is exclusively hydrophobic, can be stabilized by the binding of heparin chains to elongated patches of positively charged residues on adjacent monomers or, alternatively, by high salt concentrations in vitro. On tetramer dissociation, the monomers are likely to undergo transformation into a zymogen-like conformation that is favored and stabilized by intramonomer interactions. The structure thus provides an improved understanding of the unique properties of the biologically active tryptase tetramer in solution and will be an incentive for the rational design of mono- and multifunctional tryptase inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3′-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T3 is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit β gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.